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Bernoulli (“Ars Conjectandi,” Basle, 1713) proved the first limit theorem of law
of large numbers which provided the foundation of probability and statistical
theory. However, the problem of Bernoulli trials is still unsettled (e.g., see Hacking,
“The Emergence of Probability,” Cambridge Univ. Press, Cambridge, 1975). It is
from different interpretations of the relationship between the Bernoulli trials and
relative frequency that we have different schools of probability theories (e.g., see
Cox (Amer. J. Phys. 14, No. 1 (1946), 1-13) and Fine (JEEE Trans. Inform. Theory
IT-16, No.3 (1970), 251-257)). In this paper we give a new treatment of the
Bernoulli trials based on fuzzy measure, and we interpret the Bernoulli trials
through the interaction of probability and possibility measures. € 1993 Academic
Press, Tnc.

1. INTRODUCTION

In the Bernoulli trials, if we are given a probability of success, p, then we
can predict the probability of success of any trial. The question is where the
priori knowledge of p came from. Bernoulli showed that p will tend to s,
which is the observed relative frequency of success as » increase. Thus one
school of probability (e.g., Von Mises) considered the limit of the relative
frequency as the definition of probability. But the limit of relative frequency
is simply a conceptual value, and we cannot afford an infinite number of
trials. Another school of probability (e.g., Neyman and Pearson) proposed
to determine p by hypotheses testing of Hy: p= py vs H,: p # po. However,
failing to reject the null hypothesis does not imply we are certain that
p=p,, since we can set up a slightly different null hypothesis and still fail
to reject it. Thus by assigning a single value p for Bernoulli trials is
just a priori, which cannot be confirmed precisely through sample trials.
Nevertheless, do we need a single value of p in order to make inference in
the Bernoulli trials? Intuitively even without priori when we observed
several number of trials we still can state that the probability of success for
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the next trial is approximately s,. So to determine which priori p for the
Bernoulli trials seems to be less critical.

An important characteristic of the Bernoulli trials is the assumption that
the propensity of trials is unchanged throughout the trials. Under this
assumption we can claim that the observed trials are the sample realization
of the population of all possible trials. Since each trial is either a success
or a failure s0 the trials can be characterized by a parameter 6, which is the
proportion of successes of the population. If we know 6, then the prediction
of each trial is determined. So under such a model it is not the priori p we
intend to estimate; it is the population parameter 6 we are estimating.
Based on the sample trials we can only obtain partial knowledge about 6.
If we represent this knowledge by probability measure, then we have the
Bayesian inference. However, if we represent the partial knowledge of 8 by
possibility measure, then we have a new inference proposed in this paper.

Although Bernoulli’s theorem provided the foundation for the school
of objective probability, but I believe Bernoulli viewed probability as a
subjective entity. This can be seen from the title of his book, from his
considering probability as a degree of certainty, and from his proposal of
nonadditive probability. This is the philosophy we adopt in this paper. We
consider probability theory as a collection of intrinsic rules of human
thinking. It is a theory of belief logic, and an extension of Boolean logic.
By extending the Boolean logic to the belief logic there are two kinds of
extensions. One is the logic of expectation and the other is the logic of
likelihood, which are corresponding to aleatory (chance) and epistemic
(belief ) concepts of probability. If a belief is for predicting a sample event,
then we can split the belief into several pieces, since there can be several
possible truths. But if a belief is for estimating a hypothesis, then the belief
cannot be subdivided, since there can be only one possible true. Thus we
need different calculus to represent these two types of belief logic.

2. PLAUSIBILITY AND BELIEF MEASURE

First we define a plausibility measure which is a subclass of the fuzzy
measure.

DeFINITION. Let # be a Borel-o-Algebra on Q. A fuzzy measure
Pl: # — [0, 1] is a plausibility measure if
(i) PUZ)=0, PlQ)=1,
(ii) A<= B=>Pl(4)< PI(B) (Isotonicity),
(iii) Pl(4 u B) < Pl(4) + PI(B) (Subadditive),
(iv) A,14=PI(4,)1Pl(4).

1)
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A conjugate of plausibility measure is a belief measure which is defined
as Bel(4)=1—PIl(4). So a belief measure satisfies
(i) Bel(@)=0, Bel(@)=1,
(i1} A4 < B=>Bel(4) < Bel(B) (Isotonicity),
(i)’ Bel(A4)+ Bel(B) — 1 < Bel(4 n B),
(iv)’ A,|A=>Bel(4,)|Bel(4).
From (iii)" we have Bel(A4) + Bel(4) < 1, therefore Bel(A4) < Pl(4), V4. If
(iii) and (iii)’ are replaced by
(v) PI{(4 U B)=sup{Pl(4), PI(B)}, V4, B, (2.3)

(22)

and
(v)" Bel(4 n B)=inf{Bel(4), Bel(B)} ¥4, B, (2.4)

then we have the possibility and necessity measure proposed by Zadeh
[12].

Obviously the plausibility measure contains the possibility and the
probability measures. Without ambiguity we use Pl, Bel to denote the
plausibility and belief measure, as well as the possibility and necessity
measures. And we use P to denote the probability measure.

Remark. Conditions (iii) and (iii)’ are weaker than the belief function
defined by Shafer [9], thus this class of fuzzy measure also contains the
belief function measure.

Similar to the probability measure, the possibility measure can be
characterized by a distribution function. Let /(8) = PI({6}), then
Pl(A4)=sup /(6), and Bel(4)=1—sup /(6). (2.5)

dea 8¢

We refer to the function /(8) as the likelihood function, since it is related
to the likelihood function in statistical inference. This function is called the
possibility distribution function by Zadeh, except we restrict the sup norm
of likelihood function to be 1.

Next we define a rule of conditioning.

DerFINtTION.  If PI(B) > 0, then the conditional plausibility of 4 given B
is
PI(A4 | B)=Pi(4 ~ B)/PI(B) (2.6)

and the conditional belief of 4 given B is Bel(4 | B)y=1—PI(4 | B).



BERNOULLI TRIALS 395

If a plausibility measure is a belief function measure then (2.6) reduces
to Dempster’s rule of conditioning. If it is a probability measure, then (2.6)
reduces to the Bayes's rule of conditioning,

Remark. Under this rule of conditioning Shafer’s belief function can be
represented by P1(4) =3, Pi(4 | B) P(B), and Bel(4) =Y ; Bel(4 | B) P(B),
where Pl(4 | B) and Bel(4 | B) are conditional possibility and necessity
measures, and P is the basic probability assignment. Thus Shafer’s belief
function theory can be considered as a random set theory, where B’s are
the sampling units.

3. RANDOM VARIABLE AND STATIONARY VARIABLE

In this section we develop a concept of stationary variable which is
associated with the likelihood judgment. A variable whose true value is
unique but unknown to us is called a stationary variable. The reason for
using the term of stationary variable is because its true value is unchanged
with respect to time. In general a stationary variable can be considered as
an unknown parameter, an unknown hypothesis, or an unknown past
event. In statistical inference, when we are sampling from a fixed unknown
population, we can consider the perspective sample statistics as random
variables and consider the population statistics as stationary variables. We
propose to measure stationary variable by possibility measure. Note that
stationary variable is also referred to as fuzzy variable by some authors.

There are two basic axioms for the belief constructions.

Axiom 1. If X is a random variable on the sample space X and each
value in X is equally likely to be true, then we have P(X=x)=1/|X],
Vx e X, where |X] is the cardinal of X.

Axiom 2. If 0 is a stationary variable in the hypothesis space & and
each value in @ are equally likely to be true, then we have [(0)=1, Ve O,
which implies Bel(4)=0, Pl(A)=1VA4A< @.

Both axioms are principle of insufficient reasoning, but depending on
sample space or hypothesis space, we have different belief representations.
Next we show how to combine random variable and stationary variable.

DermiTioN. If X' |6 is a random variable on X with probability
function p(x|6) and 6 is a stationary variable on @ with likelihood
function /(8), then the joint plausibility measure is

Pl(Xe 4, BeB):supJ pl(x, ) dx, (3.3)

feB A

where pl(x, 8)=p(x | 8) | (8) is a joint plausibility function.
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From (3.3) we can obtain two marginal meausures. The marginal
measure for 6 is still a possibility measure, since Pl(fe B)=
SUPye p fx plx | 0) [(8) dx = sup,_ » /(0); but the marginal measure for X is
not a probability measure.

THEOREM 3.1. If X | 6~ p(x | 8) and I(8) is a likelihood function, then

Pl(Xe€ 4)=sup J plx | 6)I(8)dx
6@

(3.4)
Bel(Xe A)=1—sup f p(x | 6)I(8) dx
fe@ 4

are plausibility and belief measures.

Proof.
Pl(XeAuB}:supf p(x18)1(8) dx
He@ *AvB

< sup {Jﬁ p(x | 60)1(6) dx+j plx|08)1(8) dx}

fe®

<sup | p(x|9)/(9)dx+supj pix18) K8) dx.
be® A feco "B
Remark. Equation (3.4) is a special case of fuzzy integral in [47], where
® is the usual multiplication and @ = v is a pseudo-addition.

If /(6) is degenerate then we have Bel(X e 4) = Pl(X € A), and it reduces
to the probability model. If @ =P is a class of probability measures
and /(P)=1VPeP then we have Pl(XeAd)=sup{P(Xed)| PcP} and
Bel{Xe A)=inf{P(Xe A)| PeP}, and it reduces to an upper and lower
probabilities model of Huber and Strassen [7].

ExampLE 1. If an urn contains ten balls, and we have only partial
knowledge that either three or four of them are red. What is the probability
that a ball selected at random will be red?

The prior information indicates that

N if 8=13/10, 4/10;
K6) = {0, otherwise.
So we have
Pi(X=1)= sup 61(6)=4/10,

LEEY

Bel(X=1)=1— sup (1—0)K0)=>3/10.

0=g0=1
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THEOREM 3.2. If X, ., X, |8~iid p(x|8)is a prior belief for 6. Then
the posterior belief for 6 | x,, ..., X, is
i0) p(xy, .., x,, | )

T sup{{(6) p(x1, .. %, 10) 0O} (33)

AR T

Proof.
10| x,, ..., x,)=plb, X, oy X,) PI(Xy s ooy X,)
=pl(b, x, ..., x,.)/sup pl(B, x, .., x,,)
fe@

=p(xy, 0 X, | 0) HOYsup plxy, . x, | 8) 1O).
Ae®

If /() and /6| x,, .., x,} represent the relative odds of the prior and
posterior beliefs, then in terms of odds ratio, the belief update by (3.5) is
equivalent to the belief update of the Bayesian Inference. However, if the
prior belief is vacuous we can always let /()= 1, V6 € ©, thus the improper
prior problem of the Bayesian inference can be avoided.

If the prior belief is vacuous (3.5) reduces to #8|x,,..,x,)=
kp(xy, .., x, | 8), which also satisfies a classical statistical principle,
L | xy, .., x,) < p(xy, .., x, | 8). Under this inference a point estimate is
less important, since we can use Bel(fe A | x,, .., x,) as our confidence
level that 6 is in A. However, if (| x,, .., x,) = then 8 is an MLE, which
is the same as MLE in classical statistical inference.

THEOREM 3.3. If X, |0 and X, | 0 are independent random variables with
probability function p(x,|8) and p,(x,|8), respectively, and 1(6)=1,
Y0e . If supy. o 11(0 ] x1) (6| x5} >0, then

1001 x,) (0] x5)
sup{/, (0] x,) ,(8 | x,) | 6@}

10| x,, x3)= (3.6)

Proof.
IO | xy, x2)=pUO, x1, x,)/plx1, X2) = plxy, x5 | O)/sup p(x,, x| 6)

g
=pi(x, 1 8) pa(xy | 0)/sup pi(x, | 0) palx,y | 6)
6
=pL(6, x,) pLy(6, x;)/sup pl,(6, x,) pl(6, x,)
veco

=1(0] x,} 15(0 | x3) ply(x,) plafx,)
/sup (8] x,) 1(0 | x;) ply(x,) pla(x2)
fej

=001 x,) (0] x2)/sup L(0 ] %)) (0] x5).
fco
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Equation (3.6) is known as the likelihood rule. It has been discussed in
Smets [11] and Shafer [107]. Similar to the Dempster’s rule of combination
this rule reduces to the Bernoulli’s rule, when /(8| x,) and /(0| x,) are
likelihood functions of simple belief functions focus on the same element 4.

THEOREM 34, If X, X, | 8 iid.~p (x| 0) and K0) =1, VA€ O, then

PUX, o € A X1, %) =5UD | 6t 1) HO | X1, o X,) iy
bee (3.7)
Bel(X,, €A | X1, n )= 1=Sup | p( iy |0)HO [ Xy, Xp) X

veco °a
Proof.
DX, 4 1 | X1y s X)) = DU vy X0 X, 1 )/PHX L s X))

=SUP P(X1,s oy Xy Xy g 15 O)/5UP P(X, oy X, 6)
be® te@

=SUp P(Xy,s ooy Xy Xupr | B)/5Up p(xy, s X, | 6)
f8e® e O

=sup p(x,+ 1| 0) plxy, s X, | 0)/sup p(xy, .y X, | 6)
de @

fe®
=sup p(x, 1] 0) O | x5 o x,).
)

The previous theorem indicates that the posterior likelihood /(8] x,, ..., X,)
can be considered as the prior belief for predicting X, .

THEOREM 3.5 (Rule of Succession). If X,,.., X, |0 iid.~ Bernoulli(6)
and [(§)=1, 0<8< 1, then

6% (1 —0)"—* .
LA Sl 0
(xjn)* ((n—x)ny"=~ if 0<x<n
HO| X1y s X} = o ; oaen
(1=0y, if x=0.
n+l n—x
n \" .
Bel(X,, ,=1]x,.,x,)= x<n+1>’ i ox<n

1—(%%—1)(n-7—1>n’ if x=n
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x+1\/x+1\/ n \" .
) G )

1 n \" .
(‘ﬁ)(?) y x=0

(3.8)

PI(X, 1 =1]x, . x,)=

where x=37_, x,.

Proof. By directly applying (3.5) and (3.7) we have the results.

THEOREM 3.6. If X, ... X, | 0 iid. ~ Bernoulli(6) and (6)=1,0<0<1,
then we have

Bel(X, . =1]|x,.\x,)<s, <PAX, 1 =1]x,.,X,), 39
where s, =x/n.

Proof. From (3.4) we have

Bel(Xe A)<P(XeA|0)<Pl(Xed), iffisan MLE.
From (3.8) s, | x,, ... x,) =1, so we have the result.

The model of the Bernoulli trials can be considered as extension of the
urn model in Example 1. In the Bernoulli trials we have infinite number of
balls in the urn. Based on finite number of trials we have only partial
knowledge about 8; therefore the prediction of the next trial becomes
imprecise. Table I gives a few values of Bel and PI for different n and x.
From this table we can see that Bel and Pl converge rather fast to relative
frequency (The rate of convergence is O(1/n)). Thus a single value s, can
provide a reasonable approximation if # is sufficiently large.

Theorem 3.5 also indicates that if we accept the two principles of insuf-
ficient reasoning; then the consistency of relative frequency and probability
becomes the consequence of the two principles. Therefore there is no need
to define probability as the limit of the relative frequency. Although
Bayesian argument, which does not distinguish the two insufficient
reasoning principles, also produces a similar result, e.g., Laplace’s rule of
succession: P(X,,;=11x;, ., x,)=(x+1)/(n+2). But the bias of the
Laplace’s rule against the relative frequency seems to be unreasonable.
Moreover, in the case if we observe x; =x,= ‘- x, =1, the need of upper
and lower probability becomes inevitable. Since if we assign

Probability (X,,,=1|x;=x,= " x,=1)=p,
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(i) if p=1, this implies the next success is a certainty. However, we
cannot make such a strong statement based on the sample evidence.

(i) if p<1, then no matter how close p is to 1 this implies there is
a small chance the next instance will fail; also in the long run we expect to
observe some failure with certainty. Again such a statement cannot be
supported by the sample evidence.

The only way to circumvent this logical inconsistency is by assigning
Probability (X, ,,=1|x;=x,=-x,=1)=p.

Theorem 3.7 (law of large number) If X, .., X, | € iid.~ Bernoulli (6)
and /(#)=1,0<60<1, then Ve >0, we have

lim Bel(|0—s,|<e]|x;, .., x,) -1 (3.10)

To prove the theorem we need the following well known lemma.

LeMMA. Let 1 be a nonnegative real numbers, and suppose 0 < i < 1. Then
<1 —A)+ae

Proof of the Theorem. 1t is trivial for the case 5s,=0, or 5,=1, s0 we
only show for the case 0<s,<1. Since (8| x,, .., x,) is increasing for
6 <s, and decreasing for 0>s,, we have PI(|§—s,|2¢]x,,..x,)<
SUp(l(s,—&] X1,y X,), Hsutel Xy, x,y=sup((1—e/s,)* (1+¢/(1—s,))" "%,
(L+e¢/s,)* (1 —¢/(1 —s,))""). By the previous lemma we have
(I—¢gfs)"(1+e/(1=5))""<(1—e)(1+e)=1—¢ thus we obtain
s, —e|x), o x,) <(1=£%)" Similarly (s, +¢] x,, .., x,) <(1 —¢&%)"; this
proves the theorem.

Theorem 3.7 is different from the classical law of large number. Since our
conditional belief is based on the observed empirical evidence x,, .., x,,
thus s, is simply a constant and not a random variable. However, the
theorem indicates that as the number of trials increases the knowledge of
6 becomes crisp. Therefore, in a loose sense we can use a single value
probability for the Bernoulli trials.

4. CONSISTENCY OF BOOLEAN LoGic AND BELIEF LogGic

The logical view of probability has been advocated by many authors
(e.g, — Keynes [8]). In this section we show that the belief logic is
consistent with the Boolean logic under the rule of conditioning. Under the
belief logic a proposition 4 is true if Bel(4) =1 or PI{(4) =0, and A is false
if Bel(4)=1 or P1(4) =0. Note that Bel(4)=0 does not implies A is false
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since we might have P1(4)> 0. However, PI(4) =0 does imply A is false,
since it implies Bel(4)=Pl(4)=0. The conditional belief Bel(B| A) is
interpreted as the degree of certainty that the proposition “If 4 then B is
true. A degree of certainty can be a chance or a belief depending on the
proposition.

THEOREM 4.1 (Modus Ponens p — ¢, p=g).
Bel(B| 4)=1, Bel(4)=1=Bel(B)=1.
Proof.
PI(BnA)=PI(B| A) Pl(4) =0,
PB~ A)=PI(B| A)Pl(4)=0
=PIB)<PIBAA)+PI(BnA)=0.
THEOREM 4.2 (Modus Tollens p— g, ~g= ~p).
Bel(B| A)=1, PI(B)=0=Pl(4)=0.
Proof.
Pl(4 n B)=Pi(A | B) PI(B) =0,
P{ANB)=PI(B| A)PI(4)=0
=PA)<PI(4nB)+Pl(4n B)=0.
THeoREM 4.3 (Hypothetical Syllogism p—q, g »>r=p—r).
Bel(B| A)=1, Bel(C|B)=1=Bel(C|A)=1.
Proof.
PI(CAA)<SPI((CAB)U(BNA)<PACAB)+PI(Br A)
=PI(C | B)PI(B) + PI(B | A) Pl(4)=0
=PIC| 4)=0.
THEOREM 4.4 (Disjunctive Syllogism p v ¢, ~p = g).
Bel(4UB)=1, Pl(4)=0=>Bel(B)=1.
Proof.
PI(B)=PI((BnA)u(BnA)<PI(BnA)+PI(BAA)=0.
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TaeoreM 4.5 (Constructive Dilemma p—>¢q, r—s, pv r=g Vv s).
Bel(B| A)=1, Bel(D|C)=1, BellduC)=1=Bel(BuD)=1
Proof.
Pl(AnB)u(CAD)u(AnC))
<PI(B| A)Pl(A)+PI(D | C) PC)+PI{ANCT)=0,
AnB)yu(CADYu(AnO)

and Bn
n

THEOREM 4.6 (Absorption p>g=>p—p A q).
Bel(B| A)=1=>Bel(4nB| A)=1.
Proof.
Pl(B| 4)=0, Pl(A| A)=0
=Pl(AuB|4)=0.
THEOREM 4.7 (Simplification p A ¢ = p).
Bel(AnB)=1=Bel(4)=1.
Proof.
Bel(4)>Bel(4n B)=1.
THeorReEM 4.8 (Conjunction p, ¢ = p A g).
Bel(4)=1, Bel(B)=1=>Bel{4dn B)=1.
Proof.
PI(4 U B)< PI(4) + PI(B) =0.
THEOREM 4.9 (Addition. p=>p v g).
Bel(4d)=1=Bel(4uUB)=1.
Proof.
Bel(4 U B) = Bel(4)=1.

The above theorems provide some justification of the proposed belief
model. They also indicate that the probabilistic logic and the possibilistic
logic are consistent with the Boolean logic.
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5. CONCLUDING REMARK

In this paper we show that the Bernoulli trials can be more appropriately
explained by the combination of probability and possibility measures than
by the probability measure alone. Probability and possibility are the two
basic belief measures; from their combination we have a variety of fuzzy
measures. However, probability and possibility measures play different
roles in belief logic inference; one is suitable for the inference of prediction
and the other is suitable for the inference of estimation. In statistics
the possibility measure can provide an inference method for hypothesis
evaluation and interval estimate. This inference is a theory of support as
opposed to a theory of decision. A discussion of these difference can be seen
in Hacking [5].

Belief logic and fuzzy logic are both multi-valued logic. However, there
is a definite unknown truth in the belief logic, but there is no definite truth
in the fuzzy logic. Therefore, the inference rules of the two logic are
different.

The rule of succession derived in this paper is a rule of inductive
inference; and the law of large number is also a law of inference and not
a law of nature. They are based on the analogy of past and future events
in the Bernoulli trials. Therefore, if the future trials has different propensity
from the past trials then we have a departure of probability and relative
frequency.
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