
IEEE Trans. Fuzzy Systems. 8, 796-799.

Fuzzy Analysis of Statistical Evidence

Yuan Yan Chen
Center for Army Analysis
Fort Belvoir, Va 22060-5230, U.S.A.

____________________________________________________________________
ABSTRACT

Fuzzy Analysis of Statistical Evidence (FASE) is utilizing the fuzzy set and the statistical theory for solving
problems of pattern recognition and/or classification. Several features of FASE are similar to the human
judgment. It can evaluate the weight of statistical evidence (information); it can update inference with new
information; and it can incorporate missing data. Furthermore, since it can extract expert rules from data,
it can also serve as a link to machine learning and expert systems.
___________________________________________________________________________________

1. Introduction

In this paper we develop a classification method using the fuzzy operators to
aggregate attribute information (evidence), and it is named Fuzzy Analysis of Statistical
Evidence (FASE). This method is closely related to the Bayesian classifiers.  However,
the classification is represented by the possibility and belief measures. By employing the
possibility measure there is no need for the consideration of prior and there is more
mathematical tools can be used. In machine learning when we infer from training sample
to population, this is a process of inductive inference. As pointed out by Chen [3] it is
more suitable to measure the inductive belief by the possibility measure than the
probability measure. If two or more rival hypotheses (classes) are equally likely, then we
do not have confidence or belief, which is true. Thus, belief is always a relative measure.

Machine learning algorithms are aiming for higher precision and faster computation.
However, with the inconsistency of the data evidence, insufficient information provided
by the attributes, and the fuzziness of the class boundary. We do not expect machine
learning algorithm or even human expert to make the correct classification all the time.
So it is important to have an uncertainty measure to represent our ignorance.

2. FASE Methodology and its Properties

Let C be the class variable and A1,…, An  be the attributes variables; and let Pos be
the possibility measures. Based on the statistical inference developed in [3] we have

Pos (C | A1,…, An ) = Pr (A1,…, An | C) / sup C  Pr (A1,…, An | C), (1)

if the prior belief is uninformative.



Pos (C | A1,…, An ) can be interpreted as the fuzzy membership that an instance
belong to class C, and Bel (C | A1,…, An ) = 1- Pos (C | A1,…, An ) is the belief measure
or certainty factor (CF) that an instance belong to class C. The difference of (1) and the
Bayes formula is simply the difference of normalization constant. In possibility measure
the sup norm is 1, while in probability measure the additive norm (integration) is 1.

In machine learning, the number of attributes are usually very large, with limited
number of training sample, the joint probability Pr (A1,…, An | C) can not be estimated
directly from the data. This problem is similar to the curse of dimensionality. If estimate
the conditional probability Pr (Ai | C) from each attribute separately, then we need a
suitable operation to combine them together.

Next we give a definition of t-norm, which is often used for the conjunction of fuzzy
sets.

Definition A fuzzy intersection/t-norm is a binary operation T: [0,1] × [0,1] → [0,1],
which is communicative, associative and satisfies the following conditions (cf. [4]).

(i) T (a, 1) = a, for all a.

(ii) T (a, b) ≤ T (c, d) whenever a ≤ c, b ≤ d. (2)

The following are examples of some t-norms that are frequently use in the literatures.

Minimum: M (a, b) = min (a, b)
Product: Π  (a, b) = ab.
Bounded difference: W (a, b) = max (0, a + b -1).

And we have W ≤ Π ≤ M.
Based on different relationship of the attributes, we have different belief update rules.

If A1, A2 are independent then we have (cf. Chen [2])

Pos (C | A1, A2) = Pos (C |A1) Pos (C | A2) / supC Pos (C |A1) Pos (C | A2), (3)

and if A1, A2 are completely dependent, i.e. Pr (A1 |A2) = 1 and  Pr (A2 |A2) = 1, then we
have

Pos (C | A1, A2) = Pos (C |A1) ∧ Pos (C | A2) / supC Pos (C |A1) ∧ Pos (C | A2), (4)

where  ∧ is a minim operation. This holds since Pos (C | A1, A2) = Pos (C |A1) = Pos (C |
A2). Note that if A1, A2 are functions of each other, they are completely dependent; so the
evidences are redundant.

In general the relations among the attributes are unknown, but, it seemed reasonable to
employ a t-norm in between Π and M for belief update. For simplicity we restricted to
the model that aggregate all attributes with a common t-norm ⊗ as follows

Pos (C | A1,…,An ) = ⊗ i=1,…,n Pos (C | Ai)  /sup C  ⊗ i=1,…,n Pos (C | Ai). (5)



If we choose ⊗ equal to the product Π, then (5) is equivalent to the naïve Bayesian
classifier with uninformative prior.

As shown in [3] product rule implies adding the weights of evidence. If attributes are
completely dependent by employing the product rule we are basically counting the same
evidence twice.

The following are some characteristic properties of FASE.

(1) For any t-norm if attribute Ai is noninformative, i.e. Pos (C = cj | Ai) = 1, ∀j, then

Pos (C | A1,…, An ) = Pos (C | A1,…,Ai-1, Ai+1 An ). (6)

This holds since T (a, 1) = a.
Equation (6) indicates that a noninformative attribute did not contribute any evidence

for overall classification, and it happens when an instance ai is missing or Ai is a constant.
Similarly if Ai is a white noise then it provide little information for classification, since
Pos (C = cj | Ai) ≈1, ∀j. Thus FASE is noise tolerant.

(2) For any t-norm if Pos (C | Ai) = 0 for some i, then

Pos (C | A1,…, An ) = 0. (7)

This holds since T (a, 0) = 0.
Equation (7) indicates that the process of belief update is by eliminating the less

plausible classes/hypothesis, i.e. Pos (C | Ai) ≈ 0, based on evidences. The ones that
survive the process become truth.

(3) For any t-norm if Bel (C = cj | A1) = a, Bel (C = ck | A2) = b, j≠k and b ≤ a, then

Bel (C = cj | A1, A2) = (a - b) / (1 - b). (8)

Since (a - b) / (1 - b) ≤ a, equation (8) implies that if the evidences conflict, it will lower
our confidence which class it belongs; however, the computation is the same no matter
which t-norm is used.

The only situation where t-norm makes a difference is when we have Bel (C = ci | A1)
= a, and Bel (C = ci | A2) = b, 0 < a, b ≤1. The t-norm will determine how much our
confidence should increase.

Thus, if we employ different t-norms to combine attributes the computations are quite
similar with each other. This also explains, even though the independence assumption of
the naïve Bayesian classifier is very often violated, it still can perform well.

3. Computation of FASE

For continuous attributes we employ the kernel estimator for density estimation
p(x) = 1/nh Σi K ((x - xi )/h), (9)



where K is chosen to be uniform for simplicity. For discrete attributes we use the
maximum likelihood estimates. The estimated probabilities from each attribute are
normalized into possibilities and then combined by a t-norm as in (5). We examine the
following two families of t-norms, since these t-norms contain wide range of fuzzy
operators. One is proposed by Frank [5] as follows

Ts (a, b) = logs (1+ (sa - 1) (sb - 1) / (s - 1)), for 0 < s < ∞. (10)
We have Ts = M, as s→ 0, Ts = Π, as s→ 1 and Ts = W, as s→ ∞.

The other is proposed by Schweizer & Sklar [8] as follows

Tp (a, b) = (max (0, ap  + bp –1))1/p , for -∞ < p < ∞. (11)

We have Tp = M, as p→ -∞, Tp = Π, as p→ 0 and Tp = W, as p→ 1.
For binary classification FASE is equivalent to the likelihood ratio statistics. If we are

interested in the disciminant power of each attribute, then Kullback’s [7] information of
divergence can be applied, which is given by

I (p1, p2) = Σx (p1(x) - p2(x)) log (p1(x)/p2(x)). (12)

FASE does not require consideration of the prior. However, if we multiply the prior,
in term of possibility measure, to the likelihood, then it discounts the evidence of certain
classes. So in a loose sense prior can also be considered as a kind of evidence.

4. Experimental Results

The data sets used in our experiments come from the UCI repository  [1]. The
computation is based on all records, disregarding it has missing values or not. A five-fold
cross validation method [6] was used for perdition accuracy. We include those records
with missing values in the training set since those non-missing values still provide
information for model estimation. If an instance has missing values, which are assigned
as null beliefs, its classification is based on lesser number of attributes. But, very often
we do not need all the attributes to make the correct classification.  Horse-colic data
contains 30% missing values; it still can perform reasonably well.

Table1. Experimental results of the primary approaches discussed in this paper

    Data set t-norm parameter** Π M
1 australian s =.75 85.0 84.7 81.8
2 breast* s =.5 96.7 96.7 96.2
3 crx* s = .1 85.5 84.9 83.9
4 DNA s =.5 95.5 94.3 82.5
5 heart s =.8 82.3 82.3 81.1
6 hepatitis* p = -.1 85.4 85.3 84.7
7 horse-colic* p = -3 80.7 79.0 80.2
8 inosphere s =.7 88.5 88.5 83.8
9 iris s =.5 93.3 93.3 93.3
10 soybean* p = -1 90.1 89.8 87.7



11 waveform s =.1 84.2 83.6 80.9
12 vote* p = -8 94.9 90.3 95.2

*Data set with missing values.
** T-norm parameters that perform well for the data set. s- Frank parameter,  p- Schweizer & Sklar
parameter

T-norms weaker than the product are less interesting and do not perform as well, so
we did not include them here. Min rule reflects the strongest evidence among the
attributes. It does not perform well if we need to aggregate large number of independent
attributes, such as the DNA data. However it performs the best if the attributes are
strongly dependent on each other, such as the vote data.

Although in many situations FASE classifier did not show significant improvement
over naïve Bayesian classifier, however, it can provide a better estimate for confidence
measure. The confidence measures under naïve Bayesian classifier tend to be  too close
to 1 to be meaningful, since it over compensates the weight of evidences. Those
confidence measures of FASE do provide useful information for classification. For
example in the crx data, FASE classifier comes up to be about 85% accuracy. If we
consider those instances with a higher confidence level, e.g. CF > .9, then we can achieve
an accuracy over 95%.

5. Conclusion

In this paper we explore the classification problem from an evidential reasoning point of
view. We only investigate a simple model of aggregating attributes information with a
common t-norm. However, this approach might suffice in many situations, as shown
from the experiments, a precise belief model for the attributes is not very important. The
advantage of using the possibility measure over of the probability measure for
classification is clearly demonstrated here. Since FASE is noise-tolerant and able to
handle missing values with ease, it allows us to consider as many attributes as possible.
This is important since many patterns become separable if we increase the dimensionality
of data. The belief Bel (C | A) can be interpreted as “ If A then C with certainty factor
CF”. Thus, by extracting the statistical pattern from the data and combine them with the
fuzzy inference rule FASE can serve as a link to inductive reasoning (machine learning)
and deductive reasoning (expert systems).
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