
 

 

 

  

Abstract— This paper applies a recently developed neural 

network called plausible neural network (PNN) to function 

approximation. Instead of using error correction, PNN 

estimates the mutual information of neurons between input 

layer and hidden layer. The simple theory and training 

algorithm of PNN lead to a faster converging rate over that of 

feedforward neural networks. Experiment results confirm PNN 

has much better training performance. In addition, the 

bi-directional network structure of PNN provides the flexibility 

of approximating any attribute of the data within a single 

framework. As a result, PNN can compute a function and its 

inverse in the same network even the inverse function generally 

is a one-to-many mapping.   

I. INTRODUCTION 

UNCTION approximation has attracted a great deal of 

research from different disciplines such as statistic, data 

mining, and neural networks [1][2]. Among those function 

approximation tools, neural networks provide a framework 

which can learn or approximate any function from given data 

samples through a training process. The black-box function 

representation generated by neural networks is easily used to 

estimate the relationship between inputs and outputs. Various 

neural network architectures have been proposed to be 

general function approximators using different training 

methods and activation functions. For such applications, the 

multilayer feedforward neural networks and radial basis 

function neural networks are the most popular approaches 

[3][4]. Although the detailed implementations vary, all 

feedforward neural network function approximators are 

based on similar theorems that have been proven to be able to 

approximate any continuous function to any degree of 

accuracy with sufficient amount of hidden neurons [5][6]. 

However, some drawbacks have been raised and discussed 

for function approximation using neural networks. First, most 

commonly mentioned, neural networks converge very slowly 

while training the networks. A great deal of research has been 

done to improve the convergence performance [7] [8]. 

Second, neural networks have the so-called “curse of 

dimensionality” problem, which means if there exist many 

local minima in the approximated function, the training may 
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be trapped in a local minimum. In addition, the sufficient 

number of hidden neurons to approximate an arbitrary 

function might be impractically large in some cases.      

In this paper, we apply a recently developed neural 

network called Plausible Neural Network (PNN) to function 

approximation. PNN is introduced by Chen in 2003 [9][10]. It 

is a hybrid model of estimating probabilistic and possibilistic 

inferences [9]. PNN uses the mutual information as the basis 

for approximate functions instead of training with error 

gradient descend. Based on this characteristic, PNN performs 

a rapid training with good function approximation results. 

Moreover, the fuzzy set theory is integrated in PNN for the 

continuous variable coding. Along with bi-directional feature 

and missing-data tolerance structure, PNN can approximate 

any single-valued variable as well as multi-valued variable in 

the same network. In the training phrase, all the variables in a 

PNN are considered as inputs. After the PNN is trained, users 

can freely decide which variables are inputs and which are 

outputs. In order to compare the function approximation 

results of PNN with those of other neural networks, we apply 

PNN and feedforward error back propagation neural 

networks to approximating the same functions.  

 This paper is organized as follows. Section II describes the 

PNN architecture as proposed by Chen. Section III illustrates 

how we implement function approximation using PNN. 

Section IV demonstrates the experiment results comparing to 

multilayer feedforward neural networks. Section V closes the 

paper with conclusions and open issues of using PNN for 

function approximation.  

II. PLAUSIBLE NEURAL NETWORK 

A. Network Architecture 

A basic PNN architecture consists of two layers (input 

layer and hidden layer) of cooperative and competitive 

neurons with complete, bidirectional, and symmetric 

connections. Fig.1 shows the basic architecture for a PNN 

model. Each input attribute is encoded into a group of 

competitive neurons which uses winner-take-all (WTA) 

algorithm to interpret the value of the attribute(e.g. in Fig. 1 

the input WTA ensemble (X1, X2, X3) encodes the values of 

attribute A1). WTA not only works with mutual information 

content weights but also has the computational power of 

nonlinear activation functions [11]. Afterward, the input 

WTA ensembles cooperate to determine the values of the 

WTA ensemble in the hidden layer. Each hidden neuron, 

generally speaking, represents a pattern or cluster for the 
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given training dataset. In other words, while inputting a data 

sample to the trained PNN, PNN is able to determine which 

patterns or clusters the data sample might contain or belong 

to.          
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Fig. 1. A general PNN architecture for a dataset contains 

three attributes (A1, A2, and A3).  

B. Attribute Value Coding 

To encode the attribute value into a WTA ensemble, first, 

each WTA ensemble has to be under one condition: for a 

WTA ensemble (X1, X2,… ,Xk) where  

           ∑
=
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1 and  0 ≤  Xi  ≤ 1 for all Xi 

In this manner, for a categorical attribute, we can use one 

neuron to represent one categorical value intuitively. For 

example, an attribute, color, with three possible values (red, 

green, and blue) can be expressed by a WTA ensemble with 

three neurons (X1, X2, X3). An input (1,0,0) represents red, 

such as, (0,1,0) is green while (0,0,1) as blue.  

As to the continuous attribute, a fuzzy set coding fits in 

perfectly for the WTA ensemble. Each neuron in the 

continuous-attribute WTA represents one fuzzy membership 

function and the value is the degree of membership for the 

specific membership function. For example, a continuous 

attribute ranged from 0 to 6 can be expressed by a 

four-neuron WTA ensemble (X1, X2, X3, X4). Assuming the 

triangular fuzzy membership function is chosen, the WTA 

represents four fuzzy membership functions where the 

centers locate at 0, 2, 4, and 6. The encode process is called 

fuzzification. A continuous value, say 3.2, can be encoded as 

(0, 0.4, 0.6, 0) representing the degrees of membership for 

each corresponding membership function. To recover the 

value from the encoded fuzzy set, defuzzification is applied. 

From the last example, 3.2 can be recovered from 

0.4*2+0.6*4. In PNN terms, each fuzzy set in the ensemble is 

called a bin and a triangular bin is a triangular membership 

function. The number of bins and the type of fuzzy 

membership functions chosen to encode a continuous 

attribute are up to the user. 

For this coding scheme, PNN can handle different types of 

attributes within the frame work. In addition, uncertain value 

and missing data can be resolved easily. For example, an 

input (0.5, 0.5, 0) for the color attribute clearly expresses 

uncertain values for red and green. Missing attribute values 

are represented by a null vector, i.e. all Xi’s in the attribute 

ensemble are zero. With this coding, since the input from 

every neuron in the attribute ensemble is zero, activation 

potential (i.e. input times the weight) contributed by the 

attribute is zero. As a consequence, the attribute with missing 

value will not participate in the WTA activation of the 

competing hidden neurons.             

C. Connection Weights  

The weight definition in PNN is based on the mutual 

information content which can determine the strength of the 

relationship between an input neuron and a hidden neuron. 

Consider two neurons, x and y, where the input for neurons is 

continuous variable in [0,1], which represent the state of 

neurons, and the weight between two neurons is given by the 

mutual information content.  (Note we call (1) mutual 

information content since (1) is a factor in the mutual 

information formula.) 
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Based on the given weight definition, if Xi, Yj are 

independent, P(Xi,Yj)= P(Xi)*P(Yj) and we can compute 

Wij=0. It shows there is no relationship between Xi and Yj. On 

the other hand, if the calculated weight is positive, it is called 

positively associated. It indicates that neuron Yj is more likely 

fire if neuron Xi fires. If the weight is negative, it is called 

negatively associated. That means neuron Yj is more likely 

rest if neuron Xi fires. Using mutual information contents as 

connection weights makes the explanation of knowledge 

transparent to the evaluated weights. Moreover, its statistical 

inference fits the possibility measure inference for PNN. 

Combining WTA activation function, which gets the max 

values of possibility measurements, completes the PNN 

inference. 

D. Forward and Reverse Firing 

One of the properties of PNN is bidirectional weight. PNN 

can be carried out in both directions between input neurons 

and hidden neurons. In this sense, forward firing is referred to 

triggering input neurons to activate the hidden neurons and 

reverse firing is referred to triggering hidden neurons to 

activate input neurons. 

For the forward firing, to determine which hidden neurons 

to activate, a competition method is applied for each hidden 

neuron in the WTA ensemble. Consider a m*n PNN network, 

there are n competitive hidden neurons, y1,y2…yn, in the same 

WTA, the input vector is [x1,x2,…xm]. Each hidden neuron 

takes input values from the input vector and multiplies with 

the corresponding weights. Through the WTA algorithm and 

the competition method, the output of hidden neuron can be 
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where S( tj ) is the normalization function 
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 In (2), α is a threshold value to cut the weak signal. Each 

competitive neuron in WTA has to obtain a value greater than 

α to become a winner. Since the above firing method could 

produce multiple winners depending on the α value, 

sometimes, it is referred to the soft-max competition method. 

On the other hand, if we set up PNN to determine only one 

winner at a time, it is referred to the hard-max competition 

method. In (3), κ is the temperature argument that can amplify 

the signals. The default setting for κ is usually 1.  

Unlike the traditional neural networks, bi-directional PNN 

structure allows to reverse firing direction. In that case, the 

input vector is taken from the hidden layer, and the outputs 

can be computed at the input layer. The reverse firing works 

the same way as forward firing only in the different direction. 

However, if we reverse fire to a continuous attribute, a 

defuzzification needs to be applied after the winners are 

determined. 

E. Training Algorithm 

In PNN, a training method is required to estimate the 

weights which contain the max information knowledge 

between input neurons and hidden neurons for the given 

training dataset. To evaluate weights, we have to evaluate 

P(Xi,Yj), P(Xi), and P(Yj) based on the definition given in (1). 

We can use the training dataset to evaluate P(Xi,Yj), P(Xi), and 

P(Yj). Given the past n co-firing history of two neurons Xi and 

Yj, (Xi k, Yjk), k = 1,2,…,n, based on the binary coding and 

fuzzy set coding, the maximum estimate likelihood function 

in weight connection can be denoted as: 
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The learning method is based on the computation of belief. 

Each training procedure measures the action potentials for 

hidden neurons. The training algorithm is shown in Fig. 2. 

First, PNN fires hidden neurons randomly for each training 

sample in order to produce an initial fire table. Based on the 

initial fire table and input training samples, PNN calculates 

the weight tables for each weight connection between input 

neurons and hidden neurons. After a new weight table 

estimated, PNN fires each training sample using firing 

method to get a new fire table. The next step is to compare 

two fire tables. If two fire tables are identical, it means weight 

table hasn’t changed and PNN is stable. Otherwise, based on 

the new fire table, estimate the new weight table and repeat 

previous steps until PNN is stable. 

 

Fire the hidden neurons randomly to
create an initial fire matrix

Start training

Step through the training dataset to
calculate the new weights using (4)
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Fig. 2. The PNN Training Algorithm 

 

III. FUNCTION APPROXIMATION USING PNN 

PNN provides a unified architecture for multiple tasks 

related to pattern recognition since the hidden neurons 

represent the hidden patterns or clusters for the dataset. Based 

on the discovered patterns, several data analysis tasks can be 

applied such as clustering, classification, rule discovery and 

prediction. PNN also can apply to function approximation by 

interpreting the found patterns. The architecture of PNN for 

function approximation is same as that shown in Fig. 1. 

Instead of pre-defining input/output attributes as done in the 

feedforward neural networks, all the attributes are considered 

as inputs in PNN during the training phase. The main PNN 

design factor at this step is to determine how many hidden 

neurons are sufficient to capture all the patterns in the given 

dataset. After PNN is trained, users can freely use a set of 

known attributes to approximate any unknown attribute in the 

network.         

The idea behind the function approximation using PNN is 

described next.  In a trained PNN, given the known attributes, 

(X1,X2…,Xn),  we want to compute the unknown attribute Y 

representing the functional relationship Y= f (X1,X2…,Xn). 

First, all the attributes (X1,X2…,Xn, and Y) are encoded to an 

input vector based on the PNN coding scheme. Since Y is 



 

 

 

unknown, it is treated as a missing value which is coded as a 

null vector. Next, we fire the input vector forward to trigger 

the hidden neurons. The activated hidden neurons, in general, 

indicate the combined patterns this input vector contains. We 

then reverse fire the output of the hidden neurons back to the 

input layer. In the reverse firing, we only need to fire to the 

unknown attribute, Y. In other words, we use the reverse 

firing to find the possible value or values of Y that are 

associated with the fired pattern. After the forward and 

reverse firing computation, the approximated value of 

attribute Y can be obtained from the output of the WTA 

ensemble using the coding scheme.  

Due to the PNN coding scheme, the output may contain 

multiple values in a single WTA ensemble (attribute). To 

extract the multiple values from a categorical attribute, α cut 

is applied. Specifically every competitive neuron in the WTA 

with value greater than α cut value is considered to be a 

potential output. As to the continuous attribute, multiple 

values may overlap in the same WTA. For example, the 

continuous attribute shown in section II contains the multiple 

output values 2.2 (0, 0.9, 0.1, 0) and 5.6 (0, 0, 0.2. 0.8). If 

PNN can approximate the values correctly, the output for the 

attribute would be (0, 0.45, 0.15, 0.4) since two fuzzy sets 

have been overlapped and normalized. A simple algorithm is 

devised to separate multiple values that may be contained in a 

given fuzzy set. Suppose the continuous attribute is encoded 

as a fuzzy set (X1,X2…,Xn). The algorithm is proceeded as 

follows: 

 

1) Identify all the local minima in the fuzzy set, where a          

local minimum, Xi, satisfying   Xi < Xi-1 and Xi <= Xi+1. 

The local minima are numbered from left to right.   

2) Based on the local minima, separate the fuzzy set.             

For i-th local minimum, create a new fuzzy set 

(Y1,Y2…,Yn), where Yj = Xj if j is the index of the fuzzy 

member between the i-th local minimum fuzzy member  

and (i-1)-th local minimum fuzzy member; otherwise, Yj 

= 0.   

3) If there exists positive values from the last local 

minimum to the last fuzzy member. Create a fuzzy set 

consisting of all the fuzzy members from the current 

local minimum to the last fuzzy member.  

4) Normalize the fuzzy sets produced in step 2 and 3. 

5) Perform defuzzification of each fuzzy set from step 4.   

 

To give an example of the above algorithm applications, 

consider the combined fuzzy set (0, 0.45, 0.15, 0.4) (using 

triangular membership functions centered at 0, 2, 4, and 6, 

respectively). There is only one local minimum in the set, 

namely, 0.15. Using step 2) of the algorithm, we create two 

fuzzy sets: (0, 0.45, 0.15, 0) and (0, 0, 0.15, 0.4). Using step 

3), we obtain the normalized fuzzy sets (0, 0.75, 0.25, 0) and 

(0, 0, 0.27, 0.73). And finally using step 4), we obtain the 

values 2.5 and 5.46 from the normalized fuzzy sets, 

respectively. The example shows that if positive 

memberships of the multiple values are overlapped in the 

close proximity of the combined fuzzy set (due to the small 

number of bins used in the example coding), the multiple 

values can only be approximated but not be exactly predicted. 

One approach to avoiding the close overlapping is to use a 

larger number of bins for the continuous attribute coding.  

To achieve better results of function approximation, low α 

cut is suggested for the hidden layer. Although higher α cut 

leads to faster convergence, it also produces a discrete 

function for the approximation due to the lost of information. 

Experiment also shows that the temperature argument κ can 

help to avoid trapping in the local minima. In addition, higher 

temperature also leads to faster convergence. However, 

higher temperature also amplifies the separation of signals 

and thus may introduce unwanted noise.          

IV. EXPERIMENTS 

In this section, we present several experimental results for 

function approximation using PNN. To compare the results, a 

feedforward neural network (FFNN) is implemented to 

approximate the same functions as used for the PNN 

experiments. First, a Gaussian function 
22 2/)( σµ−−

=
x

ey is 

used to test the performance of PNN and FFNN. We set up 

the Gaussian function with μ=50 and σ=15. The 

independent variable of the Gaussian function , X,  ranges 

from 0 to 100. We generate 150 points with outliers for the 

training dataset and 350 points for testing.  

For the PNN configuration, 30 bins are specified for each 

continuous attribute, and the number of hidden neurons is 20. 

To train the PNN, we assign α cut = 0.001 and κ = 1. The 

number of maximum iterations is set to 300. In this 

experiment, PNN stabilized in 164 iterations with mean 

square error (MSE) 0.0019. The MSE for the testing dataset 

tested with the trained PNN is 0.0023. Fig. 3 shows the result 

of this approximation using PNN. The result also shows the 

capability of PNN to reduce the effect of the outliers.      

   

 
Fig. 3. Approximate Gaussian function using PNN 

 



 

 

 

Fig. 4 shows the result of the approximation of the same 

function using FFNN. The neural network contains one 

hidden layer with 20 hidden neurons. The error criterion is set 

to 0.001 and the maximum iteration is 10,000. The result in 

Fig. 4 indicates the error criterion is not satisfied. The training 

stops at 10,000 iterations with mean square error 0.0018. 

Comparing the results, to meet the similar error criterion, 

PNN converges much faster than the FFNN.  

 

 
Fig. 4. Approximate Gaussian function using FFNN 

 

Table 1 and Fig. 5 show the mean square errors of the first 

ten iterations for both PNN and FFNN in the last experiments. 

As shown, PNN reduces the error much more rapidly than 

FFNN does in the first 10 iterations. However, the error 

fluctuates slightly (increases sometimes) when PNN is near 

stabilized because the PNN training is based on maximizing 

the total mutual information rather than on minimizing the 

error function.  

 
Table 1. The MSE of the first 10 iterations for PNN and FFNN 

 1 2 3 4 5 6 7 8 9 10 

PNN 0.136 0.135 0.13 0.114 0.073 0.018 0.0025 0.0023 0.0021 0.002 

FFNN 0.205 0.202 0.198 0.195 0.192 0.19 0.188 0.186 0.185 0.184 
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Fig. 5. The MSE of the first 10 iterations for PNN and FFNN 

 

Another experiment is conducted to test the ability of PNN 

to approximate multi-valued function. We use the trained 

PNN in the previous experiment to approximate the inverse 

of the Gaussian function, which is a multi-valued function. 

The input testing set consists of 100 Y values ranging from 0 

to 1. We want to compute the associated X values of the input 

Y values. In Fig. 6, we show 197 (X,Y) points that are 

computed from the given Y values using the trained PNN. 

Note that each Y value produces two X’s except the top three 

Y’s whose associated X values are too close to separate by the 

algorithm proposed in section III. However, the result shows 

the flexibility and capability of PNN to approximate 

single-valued as well as multi-valued functions.   

 
Fig. 6. Approximate multi-value function using PNN  

 

Same configurations for both PNN and FFNN are applied 

to approximate another function Y=sinc(X)+1. The training 

set consists of 150 (X,Y) points, where X ranges from 0 to 30.  

And 350 (X,Y) points are created for testing. PNN is stable 

after 283 training iterations. On the other hand, FFNN fails 

again to converge to the specified error criterion after 10,000 

training iterations.  In addition, after the training, the PNN has 

the mean square error of 0.0013 which is better than FFNN’s 

0.0035. Validating the testing data on the trained PNN and 

FFNN clearly shows that PNN (with MSE=0.0031) 

outperforms FFNN  (with MSE=0.0081).  

 

 
Fig. 7. Function approximation using PNN and FFNN 

 



 

 

 

Fig. 7 illustrates the combined results of PNN and FFNN. 

Although in theory FFNN can approximate any real 

continuous function to any degree of accuracy with sufficient 

amount of hidden neurons, finding sufficient hidden neurons 

to satisfy the desired accuracy with reasonable training time is 

not very practical. 

Fig. 8 shows the outcome of approximating a free-drawing 

function using a PNN. In this PNN, 40 bins are assigned for 

each attribute and 200 (X,Y) points of the function are used to 

train the PNN. The training process is stable in 236 iterations. 

To validate the performance, 100 Y values ranging from 0 to 

1 are input to the PNN to approximate X values. For each of 

the testing Y value, the PNN can approximate the associated 

X values, which may vary from zero to four distinct values. 

However, noise caused by the PNN computation produces 

inappropriate approximation in some testing values as shown 

in Fig. 8.   

 

 

 
Fig. 8. PNN approximates the inverse of a free-drawing 

function (i.e. multi-valued approximation)  

V. CONCLUSIONS AND OPEN ISSUES 

The proposed PNN for function approximation provides 

faster convergence and unified bi-directional function 

approximation. The traditional neural networks even with 

robust learning algorithms [8] need hundreds of iterations to 

get quality results, whereas PNN can reach acceptable results 

in dozens of iterations. Our experiments with many 

free-drawing functions support our belief that PNN using the 

training algorithm based on mutual information with 

sufficient training set and hidden neurons can approximate 

any continuous function to any degree of accuracy. 

Insufficient training set or hidden neurons, however, may 

compromise the approximation performance of PNN. The 

training set is considered sufficient if it contains important 

patterns or features of the approximated function.    

The capability of PNN to approximate a function and its 

multi-valued inverse in the same network is a very unique 

feature not available in other neural network architectures. In 

terms of knowledge representation, a PNN can be used to 

represent all the relationships among attributes. In contrast, 

other neural networks can only be used to represent specific 

relationships between selected input and output attributes. 

The algorithm (Section III) used to recover the multiple 

values from the overlapped WTA fuzzy set in a PNN works 

well if the multiple values are relatively separable. It is still an 

issue open for further research if the multiple values are close 

to each other. Fig. 6 and Fig. 8 show the inadequate 

separations of the inversed multiple values near the local 

minima or maxima of the functions using the algorithm. For 

future research work, we like to extend the algorithm to 

enhance its separation power. Although applying PNN to the 

high-dimensional function approximation problem has not 

yet been tested, we believe that the simplicity and quick 

convergence of PNN can handle such a large-scale problem 

without much difficulty.  
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