

Abstract— This paper applies a recently developed neural

network called plausible neural network (PNN) to function

approximation. Instead of using error correction, PNN

estimates the mutual information of neurons between input

layer and hidden layer. The simple theory and training

algorithm of PNN lead to a faster converging rate over that of

feedforward neural networks. Experiment results confirm PNN

has much better training performance. In addition, the

bi-directional network structure of PNN provides the flexibility

of approximating any attribute of the data within a single

framework. As a result, PNN can compute a function and its

inverse in the same network even the inverse function generally

is a one-to-many mapping.

I. INTRODUCTION

UNCTION approximation has attracted a great deal of

research from different disciplines such as statistic, data

mining, and neural networks [1][2]. Among those function

approximation tools, neural networks provide a framework

which can learn or approximate any function from given data

samples through a training process. The black-box function

representation generated by neural networks is easily used to

estimate the relationship between inputs and outputs. Various

neural network architectures have been proposed to be

general function approximators using different training

methods and activation functions. For such applications, the

multilayer feedforward neural networks and radial basis

function neural networks are the most popular approaches

[3][4]. Although the detailed implementations vary, all

feedforward neural network function approximators are

based on similar theorems that have been proven to be able to

approximate any continuous function to any degree of

accuracy with sufficient amount of hidden neurons [5][6].

However, some drawbacks have been raised and discussed

for function approximation using neural networks. First, most

commonly mentioned, neural networks converge very slowly

while training the networks. A great deal of research has been

done to improve the convergence performance [7] [8].

Second, neural networks have the so-called “curse of

dimensionality” problem, which means if there exist many

local minima in the approximated function, the training may

Kuo-chen Li is with the University of Louisville, Louisville, KY 40241,

USA. (e-mail: k0li0005@louisville.edu)

Dar-jen Chang is with the University of Louisville, Louisville, KY 40241,

USA (corresponding author to provide phone: 502-852-0472; fax:

502-852-4713; e-mail: djchan01@uofl.edu)

Yuan Yan Chen is with PNN technologies Inc, Woodbridge, VA 22195,

USA (e-mail: yan_chen@pnntech.com)

be trapped in a local minimum. In addition, the sufficient

number of hidden neurons to approximate an arbitrary

function might be impractically large in some cases.

In this paper, we apply a recently developed neural

network called Plausible Neural Network (PNN) to function

approximation. PNN is introduced by Chen in 2003 [9][10]. It

is a hybrid model of estimating probabilistic and possibilistic

inferences [9]. PNN uses the mutual information as the basis

for approximate functions instead of training with error

gradient descend. Based on this characteristic, PNN performs

a rapid training with good function approximation results.

Moreover, the fuzzy set theory is integrated in PNN for the

continuous variable coding. Along with bi-directional feature

and missing-data tolerance structure, PNN can approximate

any single-valued variable as well as multi-valued variable in

the same network. In the training phrase, all the variables in a

PNN are considered as inputs. After the PNN is trained, users

can freely decide which variables are inputs and which are

outputs. In order to compare the function approximation

results of PNN with those of other neural networks, we apply

PNN and feedforward error back propagation neural

networks to approximating the same functions.

 This paper is organized as follows. Section II describes the

PNN architecture as proposed by Chen. Section III illustrates

how we implement function approximation using PNN.

Section IV demonstrates the experiment results comparing to

multilayer feedforward neural networks. Section V closes the

paper with conclusions and open issues of using PNN for

function approximation.

II. PLAUSIBLE NEURAL NETWORK

A. Network Architecture

A basic PNN architecture consists of two layers (input

layer and hidden layer) of cooperative and competitive

neurons with complete, bidirectional, and symmetric

connections. Fig.1 shows the basic architecture for a PNN

model. Each input attribute is encoded into a group of

competitive neurons which uses winner-take-all (WTA)

algorithm to interpret the value of the attribute(e.g. in Fig. 1

the input WTA ensemble (X1, X2, X3) encodes the values of

attribute A1). WTA not only works with mutual information

content weights but also has the computational power of

nonlinear activation functions [11]. Afterward, the input

WTA ensembles cooperate to determine the values of the

WTA ensemble in the hidden layer. Each hidden neuron,

generally speaking, represents a pattern or cluster for the

High-speed Bi-directional Function Approximation Using Plausible

Neural Networks

Kuo-chen Li, Dar-jen Chang, and Yuan Yan Chen

F

given training dataset. In other words, while inputting a data

sample to the trained PNN, PNN is able to determine which

patterns or clusters the data sample might contain or belong

to.

 WTA

WTA

Input neurons

Hidden neurons

Y1

Y2

Y3

X1

X2

X3

X4

X5

X6

X7

{

{

{

A1

WTA

WTA

A2

A3

Fig. 1. A general PNN architecture for a dataset contains

three attributes (A1, A2, and A3).

B. Attribute Value Coding

To encode the attribute value into a WTA ensemble, first,

each WTA ensemble has to be under one condition: for a

WTA ensemble (X1, X2,… ,Xk) where

 ∑
=

=
k

i

iX
1

1 and 0 ≤ Xi ≤ 1 for all Xi

In this manner, for a categorical attribute, we can use one

neuron to represent one categorical value intuitively. For

example, an attribute, color, with three possible values (red,

green, and blue) can be expressed by a WTA ensemble with

three neurons (X1, X2, X3). An input (1,0,0) represents red,

such as, (0,1,0) is green while (0,0,1) as blue.

As to the continuous attribute, a fuzzy set coding fits in

perfectly for the WTA ensemble. Each neuron in the

continuous-attribute WTA represents one fuzzy membership

function and the value is the degree of membership for the

specific membership function. For example, a continuous

attribute ranged from 0 to 6 can be expressed by a

four-neuron WTA ensemble (X1, X2, X3, X4). Assuming the

triangular fuzzy membership function is chosen, the WTA

represents four fuzzy membership functions where the

centers locate at 0, 2, 4, and 6. The encode process is called

fuzzification. A continuous value, say 3.2, can be encoded as

(0, 0.4, 0.6, 0) representing the degrees of membership for

each corresponding membership function. To recover the

value from the encoded fuzzy set, defuzzification is applied.

From the last example, 3.2 can be recovered from

0.4*2+0.6*4. In PNN terms, each fuzzy set in the ensemble is

called a bin and a triangular bin is a triangular membership

function. The number of bins and the type of fuzzy

membership functions chosen to encode a continuous

attribute are up to the user.

For this coding scheme, PNN can handle different types of

attributes within the frame work. In addition, uncertain value

and missing data can be resolved easily. For example, an

input (0.5, 0.5, 0) for the color attribute clearly expresses

uncertain values for red and green. Missing attribute values

are represented by a null vector, i.e. all Xi’s in the attribute

ensemble are zero. With this coding, since the input from

every neuron in the attribute ensemble is zero, activation

potential (i.e. input times the weight) contributed by the

attribute is zero. As a consequence, the attribute with missing

value will not participate in the WTA activation of the

competing hidden neurons.

C. Connection Weights

The weight definition in PNN is based on the mutual

information content which can determine the strength of the

relationship between an input neuron and a hidden neuron.

Consider two neurons, x and y, where the input for neurons is

continuous variable in [0,1], which represent the state of

neurons, and the weight between two neurons is given by the

mutual information content. (Note we call (1) mutual

information content since (1) is a factor in the mutual

information formula.)

 












=

)()(

),(
ln

ji

ji

ij
YPXP

YXP
ω (1)

Based on the given weight definition, if Xi, Yj are

independent, P(Xi,Yj)= P(Xi)*P(Yj) and we can compute

Wij=0. It shows there is no relationship between Xi and Yj. On

the other hand, if the calculated weight is positive, it is called

positively associated. It indicates that neuron Yj is more likely

fire if neuron Xi fires. If the weight is negative, it is called

negatively associated. That means neuron Yj is more likely

rest if neuron Xi fires. Using mutual information contents as

connection weights makes the explanation of knowledge

transparent to the evaluated weights. Moreover, its statistical

inference fits the possibility measure inference for PNN.

Combining WTA activation function, which gets the max

values of possibility measurements, completes the PNN

inference.

D. Forward and Reverse Firing

One of the properties of PNN is bidirectional weight. PNN

can be carried out in both directions between input neurons

and hidden neurons. In this sense, forward firing is referred to

triggering input neurons to activate the hidden neurons and

reverse firing is referred to triggering hidden neurons to

activate input neurons.

For the forward firing, to determine which hidden neurons

to activate, a competition method is applied for each hidden

neuron in the WTA ensemble. Consider a m*n PNN network,

there are n competitive hidden neurons, y1,y2…yn, in the same

WTA, the input vector is [x1,x2,…xm]. Each hidden neuron

takes input values from the input vector and multiplies with

the corresponding weights. Through the WTA algorithm and

the competition method, the output of hidden neuron can be

represented by the following:

otherwisey

e

e
jxwSy

j

i
xw

j

Xw

iijj

i

iij

i

iij

,0

sup

,),(

=

>
∑

∑

∀= ∑ α
 (2)

where S(tj) is the normalization function

∑
=

j

t

t

j
j

j

e

e
tS

κ

κ

)((3)

 In (2), α is a threshold value to cut the weak signal. Each

competitive neuron in WTA has to obtain a value greater than

α to become a winner. Since the above firing method could

produce multiple winners depending on the α value,

sometimes, it is referred to the soft-max competition method.

On the other hand, if we set up PNN to determine only one

winner at a time, it is referred to the hard-max competition

method. In (3), κ is the temperature argument that can amplify

the signals. The default setting for κ is usually 1.

Unlike the traditional neural networks, bi-directional PNN

structure allows to reverse firing direction. In that case, the

input vector is taken from the hidden layer, and the outputs

can be computed at the input layer. The reverse firing works

the same way as forward firing only in the different direction.

However, if we reverse fire to a continuous attribute, a

defuzzification needs to be applied after the winners are

determined.

E. Training Algorithm

In PNN, a training method is required to estimate the

weights which contain the max information knowledge

between input neurons and hidden neurons for the given

training dataset. To evaluate weights, we have to evaluate

P(Xi,Yj), P(Xi), and P(Yj) based on the definition given in (1).

We can use the training dataset to evaluate P(Xi,Yj), P(Xi), and

P(Yj). Given the past n co-firing history of two neurons Xi and

Yj, (Xi k, Yjk), k = 1,2,…,n, based on the binary coding and

fuzzy set coding, the maximum estimate likelihood function

in weight connection can be denoted as:

)ln(

11

1

∑∑

∑

==

==
n

k

jk

n

k

ik

n

k

jkik

ij

yx

yxn

ω (4)

The learning method is based on the computation of belief.

Each training procedure measures the action potentials for

hidden neurons. The training algorithm is shown in Fig. 2.

First, PNN fires hidden neurons randomly for each training

sample in order to produce an initial fire table. Based on the

initial fire table and input training samples, PNN calculates

the weight tables for each weight connection between input

neurons and hidden neurons. After a new weight table

estimated, PNN fires each training sample using firing

method to get a new fire table. The next step is to compare

two fire tables. If two fire tables are identical, it means weight

table hasn’t changed and PNN is stable. Otherwise, based on

the new fire table, estimate the new weight table and repeat

previous steps until PNN is stable.

Fire the hidden neurons randomly to
create an initial fire matrix

Start training

Step through the training dataset to
calculate the new weights using (4)

Given the new weights, fire training
set forward to get a new fire matrix

Same?

Compare the new fire matrix to the

previous fire matrix

Stable.

End training

NO

YES

Fig. 2. The PNN Training Algorithm

III. FUNCTION APPROXIMATION USING PNN

PNN provides a unified architecture for multiple tasks

related to pattern recognition since the hidden neurons

represent the hidden patterns or clusters for the dataset. Based

on the discovered patterns, several data analysis tasks can be

applied such as clustering, classification, rule discovery and

prediction. PNN also can apply to function approximation by

interpreting the found patterns. The architecture of PNN for

function approximation is same as that shown in Fig. 1.

Instead of pre-defining input/output attributes as done in the

feedforward neural networks, all the attributes are considered

as inputs in PNN during the training phase. The main PNN

design factor at this step is to determine how many hidden

neurons are sufficient to capture all the patterns in the given

dataset. After PNN is trained, users can freely use a set of

known attributes to approximate any unknown attribute in the

network.

The idea behind the function approximation using PNN is

described next. In a trained PNN, given the known attributes,

(X1,X2…,Xn), we want to compute the unknown attribute Y

representing the functional relationship Y= f (X1,X2…,Xn).

First, all the attributes (X1,X2…,Xn, and Y) are encoded to an

input vector based on the PNN coding scheme. Since Y is

unknown, it is treated as a missing value which is coded as a

null vector. Next, we fire the input vector forward to trigger

the hidden neurons. The activated hidden neurons, in general,

indicate the combined patterns this input vector contains. We

then reverse fire the output of the hidden neurons back to the

input layer. In the reverse firing, we only need to fire to the

unknown attribute, Y. In other words, we use the reverse

firing to find the possible value or values of Y that are

associated with the fired pattern. After the forward and

reverse firing computation, the approximated value of

attribute Y can be obtained from the output of the WTA

ensemble using the coding scheme.

Due to the PNN coding scheme, the output may contain

multiple values in a single WTA ensemble (attribute). To

extract the multiple values from a categorical attribute, α cut

is applied. Specifically every competitive neuron in the WTA

with value greater than α cut value is considered to be a

potential output. As to the continuous attribute, multiple

values may overlap in the same WTA. For example, the

continuous attribute shown in section II contains the multiple

output values 2.2 (0, 0.9, 0.1, 0) and 5.6 (0, 0, 0.2. 0.8). If

PNN can approximate the values correctly, the output for the

attribute would be (0, 0.45, 0.15, 0.4) since two fuzzy sets

have been overlapped and normalized. A simple algorithm is

devised to separate multiple values that may be contained in a

given fuzzy set. Suppose the continuous attribute is encoded

as a fuzzy set (X1,X2…,Xn). The algorithm is proceeded as

follows:

1) Identify all the local minima in the fuzzy set, where a

local minimum, Xi, satisfying Xi < Xi-1 and Xi <= Xi+1.

The local minima are numbered from left to right.

2) Based on the local minima, separate the fuzzy set.

For i-th local minimum, create a new fuzzy set

(Y1,Y2…,Yn), where Yj = Xj if j is the index of the fuzzy

member between the i-th local minimum fuzzy member

and (i-1)-th local minimum fuzzy member; otherwise, Yj

= 0.

3) If there exists positive values from the last local

minimum to the last fuzzy member. Create a fuzzy set

consisting of all the fuzzy members from the current

local minimum to the last fuzzy member.

4) Normalize the fuzzy sets produced in step 2 and 3.

5) Perform defuzzification of each fuzzy set from step 4.

To give an example of the above algorithm applications,

consider the combined fuzzy set (0, 0.45, 0.15, 0.4) (using

triangular membership functions centered at 0, 2, 4, and 6,

respectively). There is only one local minimum in the set,

namely, 0.15. Using step 2) of the algorithm, we create two

fuzzy sets: (0, 0.45, 0.15, 0) and (0, 0, 0.15, 0.4). Using step

3), we obtain the normalized fuzzy sets (0, 0.75, 0.25, 0) and

(0, 0, 0.27, 0.73). And finally using step 4), we obtain the

values 2.5 and 5.46 from the normalized fuzzy sets,

respectively. The example shows that if positive

memberships of the multiple values are overlapped in the

close proximity of the combined fuzzy set (due to the small

number of bins used in the example coding), the multiple

values can only be approximated but not be exactly predicted.

One approach to avoiding the close overlapping is to use a

larger number of bins for the continuous attribute coding.

To achieve better results of function approximation, low α

cut is suggested for the hidden layer. Although higher α cut

leads to faster convergence, it also produces a discrete

function for the approximation due to the lost of information.

Experiment also shows that the temperature argument κ can

help to avoid trapping in the local minima. In addition, higher

temperature also leads to faster convergence. However,

higher temperature also amplifies the separation of signals

and thus may introduce unwanted noise.

IV. EXPERIMENTS

In this section, we present several experimental results for

function approximation using PNN. To compare the results, a

feedforward neural network (FFNN) is implemented to

approximate the same functions as used for the PNN

experiments. First, a Gaussian function
22 2/)(σµ−−

=
x

ey is

used to test the performance of PNN and FFNN. We set up

the Gaussian function with μ=50 and σ=15. The

independent variable of the Gaussian function , X, ranges

from 0 to 100. We generate 150 points with outliers for the

training dataset and 350 points for testing.

For the PNN configuration, 30 bins are specified for each

continuous attribute, and the number of hidden neurons is 20.

To train the PNN, we assign α cut = 0.001 and κ = 1. The

number of maximum iterations is set to 300. In this

experiment, PNN stabilized in 164 iterations with mean

square error (MSE) 0.0019. The MSE for the testing dataset

tested with the trained PNN is 0.0023. Fig. 3 shows the result

of this approximation using PNN. The result also shows the

capability of PNN to reduce the effect of the outliers.

Fig. 3. Approximate Gaussian function using PNN

Fig. 4 shows the result of the approximation of the same

function using FFNN. The neural network contains one

hidden layer with 20 hidden neurons. The error criterion is set

to 0.001 and the maximum iteration is 10,000. The result in

Fig. 4 indicates the error criterion is not satisfied. The training

stops at 10,000 iterations with mean square error 0.0018.

Comparing the results, to meet the similar error criterion,

PNN converges much faster than the FFNN.

Fig. 4. Approximate Gaussian function using FFNN

Table 1 and Fig. 5 show the mean square errors of the first

ten iterations for both PNN and FFNN in the last experiments.

As shown, PNN reduces the error much more rapidly than

FFNN does in the first 10 iterations. However, the error

fluctuates slightly (increases sometimes) when PNN is near

stabilized because the PNN training is based on maximizing

the total mutual information rather than on minimizing the

error function.

Table 1. The MSE of the first 10 iterations for PNN and FFNN

 1 2 3 4 5 6 7 8 9 10

PNN 0.136 0.135 0.13 0.114 0.073 0.018 0.0025 0.0023 0.0021 0.002

FFNN 0.205 0.202 0.198 0.195 0.192 0.19 0.188 0.186 0.185 0.184

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5 6 7 8 9 10

PNN

FFNN

Fig. 5. The MSE of the first 10 iterations for PNN and FFNN

Another experiment is conducted to test the ability of PNN

to approximate multi-valued function. We use the trained

PNN in the previous experiment to approximate the inverse

of the Gaussian function, which is a multi-valued function.

The input testing set consists of 100 Y values ranging from 0

to 1. We want to compute the associated X values of the input

Y values. In Fig. 6, we show 197 (X,Y) points that are

computed from the given Y values using the trained PNN.

Note that each Y value produces two X’s except the top three

Y’s whose associated X values are too close to separate by the

algorithm proposed in section III. However, the result shows

the flexibility and capability of PNN to approximate

single-valued as well as multi-valued functions.

Fig. 6. Approximate multi-value function using PNN

Same configurations for both PNN and FFNN are applied

to approximate another function Y=sinc(X)+1. The training

set consists of 150 (X,Y) points, where X ranges from 0 to 30.

And 350 (X,Y) points are created for testing. PNN is stable

after 283 training iterations. On the other hand, FFNN fails

again to converge to the specified error criterion after 10,000

training iterations. In addition, after the training, the PNN has

the mean square error of 0.0013 which is better than FFNN’s

0.0035. Validating the testing data on the trained PNN and

FFNN clearly shows that PNN (with MSE=0.0031)

outperforms FFNN (with MSE=0.0081).

Fig. 7. Function approximation using PNN and FFNN

Fig. 7 illustrates the combined results of PNN and FFNN.

Although in theory FFNN can approximate any real

continuous function to any degree of accuracy with sufficient

amount of hidden neurons, finding sufficient hidden neurons

to satisfy the desired accuracy with reasonable training time is

not very practical.

Fig. 8 shows the outcome of approximating a free-drawing

function using a PNN. In this PNN, 40 bins are assigned for

each attribute and 200 (X,Y) points of the function are used to

train the PNN. The training process is stable in 236 iterations.

To validate the performance, 100 Y values ranging from 0 to

1 are input to the PNN to approximate X values. For each of

the testing Y value, the PNN can approximate the associated

X values, which may vary from zero to four distinct values.

However, noise caused by the PNN computation produces

inappropriate approximation in some testing values as shown

in Fig. 8.

Fig. 8. PNN approximates the inverse of a free-drawing

function (i.e. multi-valued approximation)

V. CONCLUSIONS AND OPEN ISSUES

The proposed PNN for function approximation provides

faster convergence and unified bi-directional function

approximation. The traditional neural networks even with

robust learning algorithms [8] need hundreds of iterations to

get quality results, whereas PNN can reach acceptable results

in dozens of iterations. Our experiments with many

free-drawing functions support our belief that PNN using the

training algorithm based on mutual information with

sufficient training set and hidden neurons can approximate

any continuous function to any degree of accuracy.

Insufficient training set or hidden neurons, however, may

compromise the approximation performance of PNN. The

training set is considered sufficient if it contains important

patterns or features of the approximated function.

The capability of PNN to approximate a function and its

multi-valued inverse in the same network is a very unique

feature not available in other neural network architectures. In

terms of knowledge representation, a PNN can be used to

represent all the relationships among attributes. In contrast,

other neural networks can only be used to represent specific

relationships between selected input and output attributes.

The algorithm (Section III) used to recover the multiple

values from the overlapped WTA fuzzy set in a PNN works

well if the multiple values are relatively separable. It is still an

issue open for further research if the multiple values are close

to each other. Fig. 6 and Fig. 8 show the inadequate

separations of the inversed multiple values near the local

minima or maxima of the functions using the algorithm. For

future research work, we like to extend the algorithm to

enhance its separation power. Although applying PNN to the

high-dimensional function approximation problem has not

yet been tested, we believe that the simplicity and quick

convergence of PNN can handle such a large-scale problem

without much difficulty.

REFERENCES

[1] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An

Introduction. MIT Press, Cambridge, MA, 1998.

[2] A. R. Barron and R. L. Barron, Statistical learning networks: a unified

view, in “Symposium on the Interface: Statistics and Computing

Science", Reston, Virginia, April, 1988.

[3] J. Zhang, G. G. Walter, Y. Miao, and W.N. W. Lee, “Wavelet Neural

Networks for Function Learning,” IEEE Trans. Signal Processing, Vol.

43, p1485-1497, June 1995.

[4] R. J. Shilling, J. J. Carroll and A. F. Al-Ajlouni, “Approximation of

nonlinear systems with radial basis function neural networks”, IEEE

Transactions on neural networks, vol. 12, no. 1, 2001.

[5] K. Hornik, M. Stinchcombe and H. White, Multilayer feedforward

networks are universal approximators, Neural Networks, 2 (1989),

359-366.

[6] M. J. D. Powell, The theory of radial basis function approximation, in

“ Advances in Numerical Analysis III, Wavelets, Subdivision

Algorithms and Radial Basis Functions", (W. A. Light Ed.), Clarendon

Press, Oxford, 1992, pp. 105-210.

[7] D. S. Chen and Ramesh C. Jain, “A Robust Back Propagation Learning

Algorithm for Function Approximation”, IEEE Trans. Neural Networks,

Vol. 5, May 1994.

[8] Sheng-Tun Li, Shu-Ching Chen. "Function Approximation Using

Robust Wavelet Neural Networks," ictai, p. 483, 14th IEEE

International Conference on Tools with Artificial Intelligence

(ICTAI'02), 2002.

[9] Y. Y. Chen, “Plausible neural networks,” Advance in Neural Networks

World, A. Grmela and N. E. Mastorakis, Ed. WSEAS Press 2002, pp.

180-185.

[10] Y. Y. Chen, “Plausible neural network with supervised and

unsupervised cluster analysis,” U.S. Patent 20030140020, July 24,

2003.

[11] W. Maass, “On the computational power with winner-take-all,” Neural

Computation, 12 (11), 2000,pp. 2519-2536.

