
 

  
Abstract— Biological sequence usually contains yet to find 

knowledge, and mining biological sequences usually involves a 
huge dataset and long computation time. Common tasks for 
biological sequence mining are pattern discovery, classification 
and clustering. The newly developed model, Plausible Neural 
Network (PNN), provides an intuitive and unified architecture for 
such a large dataset analysis. This paper introduces the basic 
concepts of the PNN, and explains how it is applied to biological 
sequence mining. The specific task of biological sequence mining, 
exon/intron prediction, is implemented by using PNN. The 
experimental results show the capability of solving biological 
sequence mining tasks using PNN.   
 

I. INTRODUCTION 
 Research in computational biology has grown rapidly in the 

past ten years due to advances in molecular biology techniques 
yielding high-throughput data. One of the most important 
research interests in computational biology is sequence mining. 
It is much harder to extract knowledge hidden in the sequences 
than to generate biological sequences. With biological mutation 
and evolution, sequence datasets usually are enormous and 
complex. Analysis models become a critical factor for 
biological sequence mining. Several tasks related to sequence 
mining such as pattern discovery, classification, prediction, and 
clustering, can be implemented by statistical, neural network, 
or data mining models [1][2]. Those models can be used to 
capture the knowledge or patterns in order to predict, classify, 
or analyze sequence data.     

A newly developed neural network model, plausible neural 
network (PNN), which combines probabilistic and possibilistic 
inferences for binary random variables was introduced in [3] 
and subsequently patented by Chen in 2003 [4]. PNN is similar 
to Hopfield neural networks in that both are bidirectional and 
symmetrical. But in inference interpretation, PNN is similar to 
Bayesian neural networks. Specifically the synaptic weights in 
PNN and Bayesian neural networks have probabilistic 
meanings and thus are transparent. However, PNN with the 
weights based on mutual information content as described in 
section II provides two important features. First, mutual 

information content weights put the PNN architecture of 
winner-take-all activation of competing neurons on a solid 
statistical inference foundation, in which no prior distribution is 
required as in Bayesian neural networks. Second, mutual 
information content weights can be used to compute Shannon 
mutual information between attributes with little added cost.  

Several advantages of PNN lead to applying it to biological 
sequence mining. The PNN model is very intuitive in that the 
user can easily train it with different initial states to discover 
patterns hidden in large-scale, complex data. In addition, the 
model is very general that it can be applied to clustering, 
prediction, classification, and pattern discovery with the same 
architecture. Moreover, PNN represents missing data as a null 
vector so that they do not participate in the PNN inference 
process. Most of other clustering and classification methods 
handle missing data by adding artificial data or removing the 
incomplete data. Since the learning process and activation 
method in PNN are simple, the computation for training or 
activation can be finished in a short period of time.  

This paper applied PNN to one of the biological sequence 
mining tasks, the prediction of exon/intron boundaries. The 
accuracy rate comparing to other computational intelligent 
models shows the quality result of PNN.   

  

II. A PNN MODEL FOR BIOLOGICAL SEQUENCE MINING 

A. PNN Architecture 
A basic PNN architecture for biological sequence mining 

consists of two layers (input layer and hidden layer) of 
cooperative and competitive neurons. The connection between 
input neurons and hidden neurons is complete, bidirectional, 
and symmetric.  

The competitive neurons are grouped into a winner-take-all 
(WTA) ensemble and, in turn, WTA ensembles cooperate in 
decision making. Fig.1 illustrates the architecture for DNA 
sequence data. The hidden neuron WTA ensemble represents 
un-labeled (thus unknown or hidden) patterns of similar 
sequences. Each input WTA ensemble encodes the values of an 
input attribute, which is either a sequence base or the sequence 
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class. For example, in Fig. 1 the input WTA ensemble (IE, EI, 
N) encodes the values of attribute Class (i.e. DNA sequence 
class label) and each WTA ensemble (A, C, G, T) encodes a 
DNA base in the sequence. 

 

 
Fig.1. PNN architecture for predicting exon/intron boundaries 

 

B. Attribute Value Coding 
PNN encodes categorical or continuous attributes into WTA 

ensembles. For sequence mining, only the categorical attribute 
encoding is required. For a categorical attribute with k 
categories, its value is encoded as a WTA ensemble of k 
binary-valued (i.e. 0 or 1) neurons (X1, X2,… , Xk). For example, 
splice-junction gene sequences datasets may have a class 
attribute with three possible values IE, EI, and N representing 
“intron to exon boundary”, “exon to intron boundary”, and 
“None”, respectively.  For such examples, the class attribute 
can be encoded in a three-neuron WTA ensemble (IE, EI, N).  
The input vector (1, 0, 0) for the class attribute WTA ensemble 
indicates the sequence is of the IE class, (0, 1, 0) indicates EI, 
and (0, 0, 1) indicates N. 

Each base in a DNA sequence is encoded by a four-neuron 
WTA ensemble (A, C, G, T).  This DNA encoding can allow for 
uncertain base value given in the IUPAC code as well. For 
example, if the base value is R (means G or C), the input vector 
for the base is (0, 0.5, 0.5, 0). Missing attribute values are 
represented by a null vector, i.e. all Xi’s in the attribute 
ensemble are zero.  

Given the coding scheme, an input WTA ensemble (X1, 
X2,… ,Xk) representing an attribute value satisfies the following 
conditions: 
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Furthermore, missing attribute values are represented by a 

null vector, i.e. all Xi’s in the attribute ensemble are zero. With 
this coding, since the input from every neuron in the attribute 
ensemble is zero, activation potential (i.e. input times the 
weight) contributed by the attribute is zero. As a consequence, 
the attribute with missing value will not participate in the WTA 
activation of the competing hidden neurons. 

C. Connection Weights 
Assume each neuron in the PNN is a binary random variable. 

The connection weight between an input neuron Xi and a hidden 
neuron Yj is given as follows 
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In (2), P denotes the probability of the enclosed event. The 

weight (2) contains the firing history or mutual information 
content of two connected neurons. It is clear that Xi and Yj are 
positively associated (excitatory), statistically independent, or 
negatively associated (inhibitory) if ωij is positive, 0, or 
negative, respectively. Note that binary random variable is 
assumed to define (2), but the estimation of (2) as described in 
section E and PNN applications also apply to neurons satisfying 
(1). 
 

D. Forward and Reverse Firing 
The PNN is bidirectional since the firing in PNN can be 

carried out in both directions between input neurons and hidden 
neurons. For convenience, forward firing is referred to the 
activation of hidden neurons given the states of the input 
neurons and reverse firing is referred to the activation of input 
neurons given the states of hidden neurons. Suppose an 
ensemble of competitive WTA hidden neurons Y1, Y2,…, Yn 
receive input signals from the input neurons X1, X2,…, Xm.  The 
firing states of Y1, Y2,…, Yn are computed in the following 
steps:  
 
1. Compute the activation potential Zj , j = 1, 2, …, n, as  
    follows 
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2. Compute Max, the maximum value of  Zj,  j = 1,2,..,n. 
3. Perform α-cut (0 < α ≤ 1) on Zj,  j = 1,2,..,n, i.e. 
    set Zj to zero if  
 

   α≤
Max
Z j  

 
4. Finally calculate the activation level of Yj, 1 ≤ j ≤ n, by  
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Step 3 is a soft WTA competition since there could be multiple 
winners with different activation level. Alternatively, one 
winner could be chosen with the largest activation level. The 
latter is called hard WTA. Step 4 is a normalization step to 
make sum of Yj equal to one. 
 In the reverse firing, the states of the hidden neurons Y1, 
Y2,…, Yn are given and the computation of the activation of 



 

input neurons is carried out for each input WTA ensemble 
separately using steps 1-4 above with some modifications. 
Specifically, for each input WTA ensemble (X1, X2,…, Xk), the 
activation of neurons Xj’s is computed using steps 1-4 with 
these modifications: 
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    ( jiij ωϖ =  is why the PNN is said to be symmetric.) 

b. In the normalization step 4, 
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c. Usually, the α value chosen for this activation is much 
smaller than that used for the forward firing activation. 
 

E. The Principle of Inverse Inference 
 

The PNN process of input data rows is via the WTA 
competition among the hidden neurons. Assuming the hard 
WTA competition is used, one hidden neuron will become the 
winner of an input data row. The outcome of the WTA 
competition is judged by the activation level of each hidden 
neuron from the forward firing of a data row as described in 
subsection D. The hidden neuron with the highest activation 
level will become the winner (i.e. the data row in question 
belongs to the cluster represented by the hidden neuron.) This 
competition process can be justified by the principle of inverse 
inference, which is stated as “Given the evidence, the more 
probable a hypothesis can produce such evidence the more 
likely it to be true” [3]. To paraphrase the principle in PNN 
terms, given an input data row (i.e. given input neurons’ 
values), the more probable hidden neuron can response to such 
an input the more likely the data row belongs to the cluster 
represented by the hidden neuron. Suppose X1, X2,…, and Xm 
denote the states (0 or 1) of  the input neurons in a PNN, the 
“evidence” (or the possibility) of a hidden neuron, Yj, 
responding to the input can be measured by the following 
conditional probability: 

 
)|,,,( 21 jm YXXXP …                                                 (5) 

 
Therefore, to justify the principle of inverse inference as 
applied to PNN, it needs to show that the winning hidden 
neuron Yj judged by the forward firing using the weight (2) has 
indeed the highest quantity (5). Using (2) to compute the 
activation potential in (3), yields 
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If the input attributes are statistically independent, (6) can be 
reduced to: 
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Plugging (7) into (3), the hidden neuron Yj’s pre-WTA 
activation value, Zj, becomes: 
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Comparing (8) and (5), Zj is equal to the conditional probability 
(5) divided by a factor common to all hidden neurons. As a 
result, using (8) to determine the winning hidden neuron yields 
the same result as using (5).  This concluded the justification of 
the principle of inverse inference used in PNN.  Furthermore 
since the sum of (5) over all Yj is one, the normalization actually 
computes (5) as the activation level for the hidden neuron Yj. 
 The statistical independence assumption on input attributes 
is a limitation of PNN as that in the naïve Bayesian neural 
networks. However, in data exploration without any prior 
knowledge of the data, the limitation would not be a big 
problem in PNN applications.  One important note about PNN 
is no prior distribution is needed due to the uniform prior 
present in the denominator of (8). This is a huge advantage over 
Bayesian neural networks, which require a difficult task of 
estimating prior distribution. 
 

F. PNN Training 
To apply PNN, a training (learning) procedure is needed to 

estimate the weight (2). The PNN training algorithm estimates 
the weights from a given dataset. Given the past co-firing 
history of two neurons X and Y, (xk, yk), k = 1,2,…,n, the weight 
(2) between X and Y in a PNN can be estimated by 
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Suppose that a training set of DNA sequences is given.  First, 

fire the hidden neurons randomly for each sequence to produce 
an initial fire matrix. Based on the initial fire matrix and 
training sequences, calculate the new weights between input 
neurons and hidden neurons using (3). In turn, use the new 
weights in the forward firing of training sequences to get a new 
fire matrix. Repeat this process until the PNN is stable, i.e. until 
the fire matrix is not changed. Fig.2 shows the PNN training 
algorithm. 

 
 
 
 
 
 
 
 
 



 

 
 

Fig.2. The PNN training algorithm 
 

III. EXPERIENTS 

A. Datasets 
Two datasets are used to test the performance of PNN. The 

first dataset is downloaded from [7]. This dataset contains 3190 
sequences which are taken from the GenBank 64.1. Each data 
sample contains a class attribute (I/E, E/I, or N), instance name, 
and 60-base sequence with 30 bases on either side of the 
boundary. 767 sequences are classified as E/I. 768 sequences 
are classified as I/E. 1655 sequences are classified as N.    

In order to determine PNNs could be used to determine 
splice site prediction with large dataset, a set of sequences used 
to benchmark gene prediction programs was downloaded from 
[5]. The second dataset contains 9204 sequences extracted from 
570 different genes.  From this set of sequences, 2629 
Exon/Intron (E/I) boundaries and 2634 Intron/Exon (I/E) were 
extracted, with 30 bases of sequence on either side of the 
boundary reported.  In addition, 3941 60-base sequences not 
occurring in an E/I or I/E (reported as an N) were extracted.  
This dataset was then separated randomly into two parts. One 
was used to train a PNN with 8 hidden neurons to distinguish 
between these three classes. The other one was used to test the 
performance of the PNN for I/E and E/I recognition.  

 

B. Comparing methods 
Eight different classification algorithms are tested using the 

first sequence dataset in [8]. The algorithms are listed as 
follows:   

1. ID3: a decission tree algorithm 
2. BP: the backpropagation algorithm 
3. LVQ: a combination of procedures of LVQ 
4. FS+LVQ: a LVQ learning with feature selection 

5. 1-nn: a 1-nearest neighbor neural network 
6. FSlNN: a 1-nearest neighbor neural network with 

a previous feature selection 
7. k-nn: a k-nearest neighbor neural network 
8. FSKNN: a k-nearest neighbor neural network with 

a previous feature selection 
 

In order to compare PNN to the above algorithms, same 
dataset is used to test the PNN and the accuracy rate is 
evaluated. The tested PNN contains 8 hidden neurons and the 
soft WTA competition is used for the network. Table 1 shows 
the accuracy rates of PNN and the other algorithms obtained 
from [8]. The result shows the PNN achieved higher accuracy 
rate than any algorithms listed above. 

 
  Table 1. Accuracy rate of E/I I/E prediction using different algorithms 
PNN ID3 BP LVQ FS+LVQ 

96.667 89.50 91.20 77.66 85.08 
 

1-nn FS1NN k-nn FSKNN 
66.38 71.86 72.23 77.77 

 

C. Evaluating the performance of PNN 
The second dataset is employed to test the PNN performance 

of handling the large dataset. From the total of 9204 sequences, 
6204 randomly selected sequences were used to train the PNN, 
and the other 3000 sequences were used to test the PNN. The 
PNN contains 8 hidden neurons and 243 input neurons (3 for 
the class attribute and 4 for each base). Alpha cut was set to 0.8 
in order to have more precise prediction. The PNN was trained 
for 200 iterations and the training was completed in minutes but 
yet to meet the stable condition. The 3000 testing sequences 
then input to the trained PNN to test the performance. The 
result showed that 2830 out 3000 sequences were correctly 
classified. In other words, 94.3% accuracy rate was achieved. 
The performance parameters: sensitivity (Sn), specificity (Sp), 
and correlation co-efficiency (CC) were calculated to assess the 
performance of the PNN. The definitions of Sn, Sp and CC are 
as follows: 
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where TP stands for True Positive, FN: for False Positive, TN 
for True Negative, and FN for  False Negative  

 
Table 2 shows the performance parameters of this 

experiment. Notice Sn, Sp, and CC have rather high 
percentages for both the I/E and E/I predictions using PNN 
even the PNN had not yet reached an optimal state. However, 
the training was extended for couple more hundreds of 
iterations, but the performance was not improved significantly. 
To improve training performance, the next experiment used a 
larger training dataset.  
 
 
 



 

Table 2. Performance parameters of E/I and I/E predictions for 3000 testing 
sequences 

 Sn Sp CC 
E/I 97.2 96.95 95.06 
I/E 91.3 94.20 88.07 

 
In this experiment, the training dataset was increased to 7204 

randomly selected sequences. The rest of the 2000 sequences 
were used to test the performance of the PNN. The same PNN 
from the previous experiment was configured for this 
experiment. The training of the PNN was finished surprisingly 
in 58 iterations and 1883 out of 2000 testing sequences were 
correctly classified. Therefore, the PNN achieved about 94% 
accuracy rate in a very short period of training time. Table 3 
also shows the performance parameters of this experiment.    

 
Table 3. Performance parameters of E/I and I/E predictions for 2000 testing 

sequences 
 Sn Sp CC 

E/I 97.22 96.39 94.52 
I/E 91.19 94.79 88.18 

 
The measurement of accuracy for this experiment shows the 

similar result from the previous experiment. Additionally, for 
misclassification, the PNN provided some useful information 
(e.g. 0.45: N 0.55:E/I) which could be used for further analysis. 

 Since the training of PNN is based on mutual information 
instead of error correction, to improve the performance, a 
simple tuning algorithm can be applied. It simply repeats the 
training process and records the configuration of the PNN, 
which has the best accuracy rate for the classification.   

 
Table 4. Measurement of E/I and I/E prediction for 2000 testing sequences 

 Sn Sp CC 
E/I 97.47 96.24 94.83 
I/E 95.47 95.13 92.00 

 
Table 4 shows the measurement of the PNN with the tuning 

algorithm. Comparing to 117 misclassified testing sequences 
from experiment 2, only 89 misclassified testing sequences 
were found out of 2000 sequences. Furthermore, the I/E 
prediction had significantly improved in Sn and CC as shown in 
Table 4.    

IV. CONCLUSION 

PNN not only shows good performance for the prediction of 
exon/intron boundaries but also can discover the patterns of 
exon/intron boundaries. For a trained PNN, each hidden neuron 
represents a found pattern. The pattern can be easily extracted 
by reverse-firing the particular hidden neuron. The extracted 
knowledge then provides better understanding of the dataset. 
Thus, the number of hidden neurons is crucial to the PNN 
performance. In this paper, different numbers of hidden 
neurons are tested in the experiments. The PNN with 8 hidden 
neurons shows the best performance regarding to the accuracy 
rate and the training time. However, to decide the minimum 
number of hidden neurons to achieve desired performance 
criteria is still an open issue.    

V. FUTURE WORK 
PNN has shown the abilities to solve problems such as 

classification, clustering, pattern recognition, function 
approximation, etc [9] [10]. In this paper, PNN has shown 
promise for gene splice-junction recognition. The fast 
convergence of PNN makes it feasible for large biological 
sequence analysis. For future work, the study of new junction 
pattern discovery and improvement of PNN for sequence 
mining in general are interesting to be implemented. In 
addition, the possibility of applying PNN to promoter 
prediction and protein profile pattern recognition will also be 
considered.   
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