

Abstract— Biological sequence usually contains yet to find

knowledge, and mining biological sequences usually involves a
huge dataset and long computation time. Common tasks for
biological sequence mining are pattern discovery, classification
and clustering. The newly developed model, Plausible Neural
Network (PNN), provides an intuitive and unified architecture for
such a large dataset analysis. This paper introduces the basic
concepts of the PNN, and explains how it is applied to biological
sequence mining. The specific task of biological sequence mining,
exon/intron prediction, is implemented by using PNN. The
experimental results show the capability of solving biological
sequence mining tasks using PNN.

I. INTRODUCTION
 Research in computational biology has grown rapidly in the

past ten years due to advances in molecular biology techniques
yielding high-throughput data. One of the most important
research interests in computational biology is sequence mining.
It is much harder to extract knowledge hidden in the sequences
than to generate biological sequences. With biological mutation
and evolution, sequence datasets usually are enormous and
complex. Analysis models become a critical factor for
biological sequence mining. Several tasks related to sequence
mining such as pattern discovery, classification, prediction, and
clustering, can be implemented by statistical, neural network,
or data mining models [1][2]. Those models can be used to
capture the knowledge or patterns in order to predict, classify,
or analyze sequence data.

A newly developed neural network model, plausible neural
network (PNN), which combines probabilistic and possibilistic
inferences for binary random variables was introduced in [3]
and subsequently patented by Chen in 2003 [4]. PNN is similar
to Hopfield neural networks in that both are bidirectional and
symmetrical. But in inference interpretation, PNN is similar to
Bayesian neural networks. Specifically the synaptic weights in
PNN and Bayesian neural networks have probabilistic
meanings and thus are transparent. However, PNN with the
weights based on mutual information content as described in
section II provides two important features. First, mutual

information content weights put the PNN architecture of
winner-take-all activation of competing neurons on a solid
statistical inference foundation, in which no prior distribution is
required as in Bayesian neural networks. Second, mutual
information content weights can be used to compute Shannon
mutual information between attributes with little added cost.

Several advantages of PNN lead to applying it to biological
sequence mining. The PNN model is very intuitive in that the
user can easily train it with different initial states to discover
patterns hidden in large-scale, complex data. In addition, the
model is very general that it can be applied to clustering,
prediction, classification, and pattern discovery with the same
architecture. Moreover, PNN represents missing data as a null
vector so that they do not participate in the PNN inference
process. Most of other clustering and classification methods
handle missing data by adding artificial data or removing the
incomplete data. Since the learning process and activation
method in PNN are simple, the computation for training or
activation can be finished in a short period of time.

This paper applied PNN to one of the biological sequence
mining tasks, the prediction of exon/intron boundaries. The
accuracy rate comparing to other computational intelligent
models shows the quality result of PNN.

II. A PNN MODEL FOR BIOLOGICAL SEQUENCE MINING

A. PNN Architecture
A basic PNN architecture for biological sequence mining

consists of two layers (input layer and hidden layer) of
cooperative and competitive neurons. The connection between
input neurons and hidden neurons is complete, bidirectional,
and symmetric.

The competitive neurons are grouped into a winner-take-all
(WTA) ensemble and, in turn, WTA ensembles cooperate in
decision making. Fig.1 illustrates the architecture for DNA
sequence data. The hidden neuron WTA ensemble represents
un-labeled (thus unknown or hidden) patterns of similar
sequences. Each input WTA ensemble encodes the values of an
input attribute, which is either a sequence base or the sequence

Biological sequence mining using Plausible
Neural Network and its application to
exon/intron boundaries prediction

Kuochen Li, Dar-jen Chang, and Eric Rouchka
CECS, University of Louisville, Louisville, KY 40292, USA

Yuan Yan Chen
PNN Technologies Inc, PO Box 7051, Woodbridge, VA 22195, USA

class. For example, in Fig. 1 the input WTA ensemble (IE, EI,
N) encodes the values of attribute Class (i.e. DNA sequence
class label) and each WTA ensemble (A, C, G, T) encodes a
DNA base in the sequence.

Fig.1. PNN architecture for predicting exon/intron boundaries

B. Attribute Value Coding
PNN encodes categorical or continuous attributes into WTA

ensembles. For sequence mining, only the categorical attribute
encoding is required. For a categorical attribute with k
categories, its value is encoded as a WTA ensemble of k
binary-valued (i.e. 0 or 1) neurons (X1, X2,… , Xk). For example,
splice-junction gene sequences datasets may have a class
attribute with three possible values IE, EI, and N representing
“intron to exon boundary”, “exon to intron boundary”, and
“None”, respectively. For such examples, the class attribute
can be encoded in a three-neuron WTA ensemble (IE, EI, N).
The input vector (1, 0, 0) for the class attribute WTA ensemble
indicates the sequence is of the IE class, (0, 1, 0) indicates EI,
and (0, 0, 1) indicates N.

Each base in a DNA sequence is encoded by a four-neuron
WTA ensemble (A, C, G, T). This DNA encoding can allow for
uncertain base value given in the IUPAC code as well. For
example, if the base value is R (means G or C), the input vector
for the base is (0, 0.5, 0.5, 0). Missing attribute values are
represented by a null vector, i.e. all Xi’s in the attribute
ensemble are zero.

Given the coding scheme, an input WTA ensemble (X1,
X2,… ,Xk) representing an attribute value satisfies the following
conditions:

 ∑
=

=
k

i
iX

1
1 and 0 ≤ Xi ≤ 1 for all Xi (1)

Furthermore, missing attribute values are represented by a

null vector, i.e. all Xi’s in the attribute ensemble are zero. With
this coding, since the input from every neuron in the attribute
ensemble is zero, activation potential (i.e. input times the
weight) contributed by the attribute is zero. As a consequence,
the attribute with missing value will not participate in the WTA
activation of the competing hidden neurons.

C. Connection Weights
Assume each neuron in the PNN is a binary random variable.

The connection weight between an input neuron Xi and a hidden
neuron Yj is given as follows












==
==

=
)1()1(

)1,1(
ln

ji

ji
ij YPXP

YXP
ω (2)

In (2), P denotes the probability of the enclosed event. The

weight (2) contains the firing history or mutual information
content of two connected neurons. It is clear that Xi and Yj are
positively associated (excitatory), statistically independent, or
negatively associated (inhibitory) if ωij is positive, 0, or
negative, respectively. Note that binary random variable is
assumed to define (2), but the estimation of (2) as described in
section E and PNN applications also apply to neurons satisfying
(1).

D. Forward and Reverse Firing
The PNN is bidirectional since the firing in PNN can be

carried out in both directions between input neurons and hidden
neurons. For convenience, forward firing is referred to the
activation of hidden neurons given the states of the input
neurons and reverse firing is referred to the activation of input
neurons given the states of hidden neurons. Suppose an
ensemble of competitive WTA hidden neurons Y1, Y2,…, Yn
receive input signals from the input neurons X1, X2,…, Xm. The
firing states of Y1, Y2,…, Yn are computed in the following
steps:

1. Compute the activation potential Zj , j = 1, 2, …, n, as
 follows

∑=
i

iijj XZ)exp(ω (3)

2. Compute Max, the maximum value of Zj, j = 1,2,..,n.
3. Perform α-cut (0 < α ≤ 1) on Zj, j = 1,2,..,n, i.e.
 set Zj to zero if

 α≤
Max
Z j

4. Finally calculate the activation level of Yj, 1 ≤ j ≤ n, by

∑

=

k
k

j
j Z

Z
Y (4)

Step 3 is a soft WTA competition since there could be multiple
winners with different activation level. Alternatively, one
winner could be chosen with the largest activation level. The
latter is called hard WTA. Step 4 is a normalization step to
make sum of Yj equal to one.
 In the reverse firing, the states of the hidden neurons Y1,
Y2,…, Yn are given and the computation of the activation of

input neurons is carried out for each input WTA ensemble
separately using steps 1-4 above with some modifications.
Specifically, for each input WTA ensemble (X1, X2,…, Xk), the
activation of neurons Xj’s is computed using steps 1-4 with
these modifications:

a. ∑=

i
iijj YZ)exp(ϖ , j = 1, 2,...,k where jiij ωϖ =

 (jiij ωϖ = is why the PNN is said to be symmetric.)

b. In the normalization step 4,
∑

=

k
k

j
j Z

Z
X , 1 ≤ j ≤ k.

c. Usually, the α value chosen for this activation is much
smaller than that used for the forward firing activation.

E. The Principle of Inverse Inference

The PNN process of input data rows is via the WTA
competition among the hidden neurons. Assuming the hard
WTA competition is used, one hidden neuron will become the
winner of an input data row. The outcome of the WTA
competition is judged by the activation level of each hidden
neuron from the forward firing of a data row as described in
subsection D. The hidden neuron with the highest activation
level will become the winner (i.e. the data row in question
belongs to the cluster represented by the hidden neuron.) This
competition process can be justified by the principle of inverse
inference, which is stated as “Given the evidence, the more
probable a hypothesis can produce such evidence the more
likely it to be true” [3]. To paraphrase the principle in PNN
terms, given an input data row (i.e. given input neurons’
values), the more probable hidden neuron can response to such
an input the more likely the data row belongs to the cluster
represented by the hidden neuron. Suppose X1, X2,…, and Xm
denote the states (0 or 1) of the input neurons in a PNN, the
“evidence” (or the possibility) of a hidden neuron, Yj,
responding to the input can be measured by the following
conditional probability:

)|,,,(21 jm YXXXP … (5)

Therefore, to justify the principle of inverse inference as
applied to PNN, it needs to show that the winning hidden
neuron Yj judged by the forward firing using the weight (2) has
indeed the highest quantity (5). Using (2) to compute the
activation potential in (3), yields

∑ ∑ ∑−=
i i i

ijiiij XPYXPX))(ln()|(ln(ω (6)

If the input attributes are statistically independent, (6) can be
reduced to:

 ∑ ∏=
i i

ijmiij XPYXXPX))(/)|,,(ln(1 …ω (7)

Plugging (7) into (3), the hidden neuron Yj’s pre-WTA
activation value, Zj, becomes:

 ∏=

i
ijmj XPYXXPZ)(/)|,(1… (8)

Comparing (8) and (5), Zj is equal to the conditional probability
(5) divided by a factor common to all hidden neurons. As a
result, using (8) to determine the winning hidden neuron yields
the same result as using (5). This concluded the justification of
the principle of inverse inference used in PNN. Furthermore
since the sum of (5) over all Yj is one, the normalization actually
computes (5) as the activation level for the hidden neuron Yj.
 The statistical independence assumption on input attributes
is a limitation of PNN as that in the naïve Bayesian neural
networks. However, in data exploration without any prior
knowledge of the data, the limitation would not be a big
problem in PNN applications. One important note about PNN
is no prior distribution is needed due to the uniform prior
present in the denominator of (8). This is a huge advantage over
Bayesian neural networks, which require a difficult task of
estimating prior distribution.

F. PNN Training
To apply PNN, a training (learning) procedure is needed to

estimate the weight (2). The PNN training algorithm estimates
the weights from a given dataset. Given the past co-firing
history of two neurons X and Y, (xk, yk), k = 1,2,…,n, the weight
(2) between X and Y in a PNN can be estimated by

)ln(

11

1

∑∑

∑

==

== n

k
k

n

k
k

n

k
kk

yx

yxn
ω (3)

Suppose that a training set of DNA sequences is given. First,

fire the hidden neurons randomly for each sequence to produce
an initial fire matrix. Based on the initial fire matrix and
training sequences, calculate the new weights between input
neurons and hidden neurons using (3). In turn, use the new
weights in the forward firing of training sequences to get a new
fire matrix. Repeat this process until the PNN is stable, i.e. until
the fire matrix is not changed. Fig.2 shows the PNN training
algorithm.

Fig.2. The PNN training algorithm

III. EXPERIENTS

A. Datasets
Two datasets are used to test the performance of PNN. The

first dataset is downloaded from [7]. This dataset contains 3190
sequences which are taken from the GenBank 64.1. Each data
sample contains a class attribute (I/E, E/I, or N), instance name,
and 60-base sequence with 30 bases on either side of the
boundary. 767 sequences are classified as E/I. 768 sequences
are classified as I/E. 1655 sequences are classified as N.

In order to determine PNNs could be used to determine
splice site prediction with large dataset, a set of sequences used
to benchmark gene prediction programs was downloaded from
[5]. The second dataset contains 9204 sequences extracted from
570 different genes. From this set of sequences, 2629
Exon/Intron (E/I) boundaries and 2634 Intron/Exon (I/E) were
extracted, with 30 bases of sequence on either side of the
boundary reported. In addition, 3941 60-base sequences not
occurring in an E/I or I/E (reported as an N) were extracted.
This dataset was then separated randomly into two parts. One
was used to train a PNN with 8 hidden neurons to distinguish
between these three classes. The other one was used to test the
performance of the PNN for I/E and E/I recognition.

B. Comparing methods
Eight different classification algorithms are tested using the

first sequence dataset in [8]. The algorithms are listed as
follows:

1. ID3: a decission tree algorithm
2. BP: the backpropagation algorithm
3. LVQ: a combination of procedures of LVQ
4. FS+LVQ: a LVQ learning with feature selection

5. 1-nn: a 1-nearest neighbor neural network
6. FSlNN: a 1-nearest neighbor neural network with

a previous feature selection
7. k-nn: a k-nearest neighbor neural network
8. FSKNN: a k-nearest neighbor neural network with

a previous feature selection

In order to compare PNN to the above algorithms, same
dataset is used to test the PNN and the accuracy rate is
evaluated. The tested PNN contains 8 hidden neurons and the
soft WTA competition is used for the network. Table 1 shows
the accuracy rates of PNN and the other algorithms obtained
from [8]. The result shows the PNN achieved higher accuracy
rate than any algorithms listed above.

 Table 1. Accuracy rate of E/I I/E prediction using different algorithms
PNN ID3 BP LVQ FS+LVQ

96.667 89.50 91.20 77.66 85.08

1-nn FS1NN k-nn FSKNN
66.38 71.86 72.23 77.77

C. Evaluating the performance of PNN
The second dataset is employed to test the PNN performance

of handling the large dataset. From the total of 9204 sequences,
6204 randomly selected sequences were used to train the PNN,
and the other 3000 sequences were used to test the PNN. The
PNN contains 8 hidden neurons and 243 input neurons (3 for
the class attribute and 4 for each base). Alpha cut was set to 0.8
in order to have more precise prediction. The PNN was trained
for 200 iterations and the training was completed in minutes but
yet to meet the stable condition. The 3000 testing sequences
then input to the trained PNN to test the performance. The
result showed that 2830 out 3000 sequences were correctly
classified. In other words, 94.3% accuracy rate was achieved.
The performance parameters: sensitivity (Sn), specificity (Sp),
and correlation co-efficiency (CC) were calculated to assess the
performance of the PNN. The definitions of Sn, Sp and CC are
as follows:

FNTP
TPSn
+

=

FPTP
TPSp
+

=

)()()()(FNTNFPTNFNTPFPTP
FNFPTNTPCC

+×+×+×+
×−×=

where TP stands for True Positive, FN: for False Positive, TN
for True Negative, and FN for False Negative

Table 2 shows the performance parameters of this

experiment. Notice Sn, Sp, and CC have rather high
percentages for both the I/E and E/I predictions using PNN
even the PNN had not yet reached an optimal state. However,
the training was extended for couple more hundreds of
iterations, but the performance was not improved significantly.
To improve training performance, the next experiment used a
larger training dataset.

Table 2. Performance parameters of E/I and I/E predictions for 3000 testing
sequences

 Sn Sp CC
E/I 97.2 96.95 95.06
I/E 91.3 94.20 88.07

In this experiment, the training dataset was increased to 7204

randomly selected sequences. The rest of the 2000 sequences
were used to test the performance of the PNN. The same PNN
from the previous experiment was configured for this
experiment. The training of the PNN was finished surprisingly
in 58 iterations and 1883 out of 2000 testing sequences were
correctly classified. Therefore, the PNN achieved about 94%
accuracy rate in a very short period of training time. Table 3
also shows the performance parameters of this experiment.

Table 3. Performance parameters of E/I and I/E predictions for 2000 testing

sequences
 Sn Sp CC

E/I 97.22 96.39 94.52
I/E 91.19 94.79 88.18

The measurement of accuracy for this experiment shows the

similar result from the previous experiment. Additionally, for
misclassification, the PNN provided some useful information
(e.g. 0.45: N 0.55:E/I) which could be used for further analysis.

 Since the training of PNN is based on mutual information
instead of error correction, to improve the performance, a
simple tuning algorithm can be applied. It simply repeats the
training process and records the configuration of the PNN,
which has the best accuracy rate for the classification.

Table 4. Measurement of E/I and I/E prediction for 2000 testing sequences

 Sn Sp CC
E/I 97.47 96.24 94.83
I/E 95.47 95.13 92.00

Table 4 shows the measurement of the PNN with the tuning

algorithm. Comparing to 117 misclassified testing sequences
from experiment 2, only 89 misclassified testing sequences
were found out of 2000 sequences. Furthermore, the I/E
prediction had significantly improved in Sn and CC as shown in
Table 4.

IV. CONCLUSION

PNN not only shows good performance for the prediction of
exon/intron boundaries but also can discover the patterns of
exon/intron boundaries. For a trained PNN, each hidden neuron
represents a found pattern. The pattern can be easily extracted
by reverse-firing the particular hidden neuron. The extracted
knowledge then provides better understanding of the dataset.
Thus, the number of hidden neurons is crucial to the PNN
performance. In this paper, different numbers of hidden
neurons are tested in the experiments. The PNN with 8 hidden
neurons shows the best performance regarding to the accuracy
rate and the training time. However, to decide the minimum
number of hidden neurons to achieve desired performance
criteria is still an open issue.

V. FUTURE WORK
PNN has shown the abilities to solve problems such as

classification, clustering, pattern recognition, function
approximation, etc [9] [10]. In this paper, PNN has shown
promise for gene splice-junction recognition. The fast
convergence of PNN makes it feasible for large biological
sequence analysis. For future work, the study of new junction
pattern discovery and improvement of PNN for sequence
mining in general are interesting to be implemented. In
addition, the possibility of applying PNN to promoter
prediction and protein profile pattern recognition will also be
considered.

REFERENCES

[1] B. S. Everitt and G. Dunn, Applied Multivariate Data Analysis. London:

Arnold, 2001, ch. 6.
[2] J. Han and M. Kamber, Data Mining: Concepts and Techniques. Morgan

Kaufmann Publishers, 2001, ch. 7 and ch. 8.
[3] Y. Y. Chen, “Plausible neural networks,” Advance in Neural Networks

World, A. Grmela and N. E. Mastorakis, Ed. WSEAS Press 2002, pp.
180-185.

[4] Y. Y. Chen, “Plausible neural network with supervised and unsupervised
cluster analysis,” U.S. Patent 20030140020, July 24, 2003.

[5] M. Burset and R. Guigo, “Evaluation of gene structure prediction
programs,” Genomics 34:353-357, 1966.

[6] E.Y. Chen,, M. Zollo, R.A. Mazzarella, A. Ciccodicola, C.N. Chen, L.
Zuo, C. Heiner, F.W. Burough, M. Ripetto, D. Schlessinger and M.
D'Urso, “Long-range sequence analysis in Xq28: thirteen known and six
candidate genes in 219.4 kb of high GC DNA between the RCP/GCP and
G6PD loci,” Hum. Mol. Genet. 5 (5), 1966, pp. 659-668. vol. 7, no. 3,
pp.368-369, June 1999.

[7] D.J. Newman, S. Hettich, C.L. Blake, and C.J. Merz, “UCI Repository of
machine learning databases”, University of California, Department of
Information and Computer Science, Irvine, CA, 1998 <
http://www.ics.uci.edu/~mlearn/MLRepository.html>

[8] M. Mar Abad Grau, and L.D.H Molinero, “ Feature selection in
codebook based methods provides high accuracy“, IJCNN’99, 1856-1860
vol.3, 1999.

[9] K. Li, D. Chang, and Y. Y. Chen, "High-speed Bi-directional Function
Approximation Using Plausible Neural Networks," Proceedings of
IJCNN'06, 2006.

[10] K. Li and D. Chang,"Fuzzy Membership Function Elicitation using
Plausible Neural Network," Proceedings of ICAI'06 Volume I, 2006, pp.
141-147.

