
Neural Networks and Belief Logic

Yuan Yan Chen and Joseph J. Chen

PNN Technologies

yan_chen@pnntech.com, josephchen@pnntech.com

Abstract

Many researchers have observed that neurons

process information in an imprecise manner - if
a logical inference emerges from neural

computation, it is inexact at best. Thus, there

must be a profound relationship between belief
logic and neural networks. In Chen (2002), a

plausible neural network model that can

compute probabilistic and possibilistic logic was
proposed. In this article we further extend this

model to continuous variables for function and

relation estimation. We discuss why and how
belief logic is derived from neural computation.

1. Introduction

Neural processing is often aimed at detecting

differences in action potential rather than

absolute values (e.g., Hopfield, 1995). For

example, neural processing detects contrast

rather than pure luminance, edges rather than

areas, and so on. In evidential reasoning the

difference in action potential means the weight

of evidence favors the hypothesis, which in turn

can be transformed into the belief (necessity) of

the possibility measure, and default into Boolean

logic. The competitive nature of neuron activities

induces the belief judgment.

2. Plausible Neural Network

A plausible neural network (PNN) model that

can compute probabilistic and possibilistic

inference for binary variables was introduced in

Chen (2002). In this article we summarized the

extension of PNN model to continuous variables,

a more detail description of this model can be

found in Chen and Chen (2003).

The weight of connection of PNN between any

two neurons is given by the mutual information
content

12 = ln (P(X, Y) / P(X) P(Y)), (1)

where X and Y are continuous variables in [0,1],

which represent the state of the neurons. The

maximum likelihood estimate of 12 is given by

ˆ
12 = log (n i xi yi / i xi i yi), (2)

where xi and yi are the history of the neuron

states.

The activation function of PNN is based on the

winner-take-all (WTA) function (e.g. Maass

(2000)). By normalization, the firing pattern of

the neuron ensemble can be interpreted as the -
cut operation of the fuzzy set. The activation of

the neuron ensemble is given as follows:

yj = s (i ij xi), j , e i ij xi / supj e
i ij xi >

yj = 0, otherwise, (3)

where s (tj) = e tj / j e tj, which is usually

referred to as the softmax function.

Unsupervised learning induces factorial

encoding (e.g., Barlow, 1989). Thus, in higher

levels of neural processing, if y1 and y2 are two

competitive hypothesis, which receive the input

from x1, x2,… xn, their action potentials are

i ij xi = i ln(p(xi yj)) – i ln (p(xi)) (4)

By taking the difference of their action

potentials, the second term of (4) is canceled,

with the assumption of independence we have

ln ((p(x1, x2,… xn y1)/ (p(x1, x2,… xn y2)) (5)

The log likelihood ratio is often referred to as the

weight of evidence (e.g., Good, 1950, Chen,

1995). Note that (5) does not have the biased

term ln (p(y1)/p(y2)), as occurs in the Bayesian

inference. If the weight of evidence for y1 is

much larger than y2, by (3) the weight of

evidence for y2 has been eliminated by the

threshold cut and we have p(y1 x1, x2,… xn) =

Proceedings of the Fourth International Conference on Hybrid Intelligent Systems (HIS’04)
0-7695-2291-2/04 $ 20.00 IEEE

Bel (y1 x1, x2,… xn) = 1, where Bel is a belief

measure (e.g., Chen (1995)); thus the network

computes as Boolean logic.

In PNN coding, a competitive neuron ensemble

corresponds to a variable in statistical inference.

If the variable is continuous, data is encoded as

complementary fuzzy sets; this process is known

as fuzzification.

The learning algorithm of PNN with hidden

neurons is intrinsically an E-M algorithm, and

given as follows

1. Fire the hidden neurons randomly.

2. M- step: estimate the weight connections of

input neurons with hidden neurons.

3. E - step: compute the action potentials of

hidden neurons and normalize into [0,1]. If

the activation level of a neuron is larger than

threshold, , then it fires.
4. Update the synaptic weight if the firing of

the hidden neuron changes.

5. Repeat the procedure until the network

stabilizes.

When the predicted variables are continuous in

supervised learning, PNN inference can perform

both function and relation estimation. Function

estimation of the PNN algorithm is demonstrated

by analyzing the data of a Henon map. The data

is trained with the time series and a first order

time lag. For predictions we input the lagged

time series in the trained network, and compute

the fuzzy centroid of the output values. This

process is referred to as defuzzification. Figure 1

shows the experimental result of the PNN

algorithm. The solid line are the predictions, the

dotted lines are the actual time series.

 It predicts correlated multiple time series

simultaneously.

3. Conclusion

In the physics of computational systems, if there

is no energy potential difference between the

communication channels, there is no diffusion

process (e.g., Mead, 1989); and no signal can be

detected. Thus, the contrast computation is used

extensively in neural network systems. We

propose that the contrast of evidence potentials

of rival hypotheses compute belief judgment.

Although the probability and possibility

measures are transferable in the cognitive

process, the contrast computation provides the

model/hypothesis selection before the inference

can be normalized into the uncertainty measure.

Reference

[1] Barlow, H. B. (1989). Unsupervised learning,

Neural Computation, 1, 295-311.

[2] Chen, Y. Y. (1995). Statistical inference

based on the possibility and belief measures.

Trans. Amer. Math. Soc. 347, 1855-1863.

[3] Chen, Y. Y. (2002). Plausible neural

networks. Advance in Neural Networks World.
Ed. Grmela, A. and Mastorakis, N. E. WSEAS

Press, 180-185.

[4] Chen, Y. Y. and Chen, J. J. (2003).
“Plausible Neural Network with Supervised and

Unsupervised Cluster Analysis”, US patent

0140020-A1.

[5] Good I. J. (1950), Probability and the

weighting of evidence. Griffin, London.

[6] Hopfield, J. J. (1995). Pattern recognition

computing using action potential timing for

stimulus representation. Nature, 376, 33-36.

[7] Maass, W. (2000). On the computational

power with winner-take-all, Neural
Computation, 12(11), 2519-2536.

[8] Mead, C. (1989). Analog VLSI and Neural
Systems. Addison-Wesley.

Figure 1 Experimental results of PNN algorithm

for estimating Henon map time series

Proceedings of the Fourth International Conference on Hybrid Intelligent Systems (HIS’04)
0-7695-2291-2/04 $ 20.00 IEEE

