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ABSTRACT. In statistical inference, we infer the population parameter based on 
the realization of sample statistics. This can be considered in the framework of 
inductive inference. We show, in Chen (1993), that if we measure a parameter by 
the possibility (or belief) measure, we can have an inductive inference similar to the 
Bayesian inference in belief update. In this article we apply this inference to 
statistical estimation and hypotheses evaluation (testing) for some parametric 
models, and compare them to the classical statistical inferences for both one-sample 
and two-sample problems. 

 

1. INTRODUCTION 
 
 In statistical inference the treatment of a parameter is always in the center of debate. The 
population parameter is a constant. However, based on the sample statistics the precise value of 
the parameter cannot be determined with absolute certainty. If we evaluate the plausible values 
of the parameter, then we have the concept of likelihood distribution of the parameter, as stated 
by Fisher (1956), “The likelihood supplies a natural order of preference among the possibilities 
under consideration.”  Bayesian inference represents the distribution of a parameter by a 
probability function. However, many authors, including Barnard, Bartlett and Fisher concluded  
that parameters with (fiducial) distributions cannot be regarded as random variables in 
Kolmogoroff’s sense (see Barnard (1987)). This prompts us to introduce a concept of stationary 
variable for an unknown parameter in Chen (1993) to differentiate it from the concept of 
random variable, and we propose to measure a stationary variable by the possibility measure. 
  Possibility theory proposed by Zadeh (1979) is derived from the theory of fuzzy sets. The 
uncertainty models similar to the possibility theory were also considered by Shackle (1961), 
Cohen (1970) and Shafer (1976). The basic operation of possibility measure is sup operation, 
which is considered as a pseudo-addition (e.g. see Ichihashi etc. (1988)). Since sup and 
addition have the same algebraic property, possibility measure, although it is a weaker scale of 
measurement, is parallel to probability measure. As a consequence, in statistical inference, 
every belief representation under Bayesian inference can have a counterpart under possibility 
inference, and vice versus (if we allow the improper probability function.) Both Bayesian 
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inference and the possibility inference discussed in this article are based on the principle of 
inverse inference ⎯ the more plausible a hypothesis can produce the evidence the more likely 
it to be true. However, from the logical point of view the inference from the sample to the 
population and the inference from the population to the sample are two different types of 
reasoning processes; one is an inductive reasoning and the other is a deductive reasoning. Thus, 
there is a need for two different kinds of uncertainty measures for the statistical inference. The 
calculus of probability measure has been shown to be not suitable for the logic of inductive 
support by many authors, e.g. Popper and Miller (1987). Thus, we opt for the possibility 
measure and its conjugate, belief measure, which is considered as an inductive probability by 
Cohen (1970), as a basis for statistical estimation and hypothesis evaluation.  
 The reasoning for the truth or falsity of a hypothesis is a judgment and not a decision; a 
decision is for anticipating an action. Without the measurement of belief we are obliged to 
employ decision theory for the hypothesis judgment.  In classical hypothesis testing when we 
fail to reject a null hypothesis there is a logical ambiguity; whether the null hypothesis is true, 
or we lack the evidence to support the alternative. As a result, a promising experiment (e.g. 
clinical trials) would be regarded as “insignificant” simply because of the shortage of sample 
sizes. Thus, we need a theory of support for the statistical inference. 
 
 

2. POSSIBILITY MEASURE, BELIEF MEASURE AND STATISTICAL INFERENCE 
 
 Possibility measure is a fuzzy measure based on evaluation (e.g. see Wang (1984)); thus the 
basic operation is sup (and inf). The possibility and necessity measures are also a subclass of 
plausibility and belief (upper and lower probabilities) measures (e.g. see Chen (1993), and 
Shafer (1976)). In this article we adopt the notations of plausibility (Pl) and belief (Bel) for the 
possibility and necessity measures.  
 
Definition. Let B be a Borel-σ-Algebra on Ω. A function Pl : B → [0,1] is a possibility 
measure if 
 
   (i)  Pl(∅) = 0, Pl(Ω) = 1, 
 (2.1)  (ii) An ↑ A  → Pl(An)↑ Pl(A),      

 (iii) Pl(A ∪ B) = Pl(A)∨ Pl(B), ∀A, B ∈B , A ∩ B=∅  (fuzzy additivity), 
 

where ’ ∨ ’ is a sup operator.  Note that the condition A ∩ B=∅  in (iii) can also be dropped. A 
conjugate measure is a necessity measure or a belief measure, which is defined by Bel(A) = 1 - 
Pl( Α ).  Under the belief measure we have 
 
     (i)′  Bel(∅) = 0, Bel(Ω) = 1, 
 (2.2)   (ii)′ An ↓ A  → Bel(An) ↓Bel(A),       
     (iii)′ Bel(A ∩ B) = Bel(A) ∧ Bel(B), ∀A, B ∈B , 
 



where ’∧’ is an inf operator.  
 Similar to the probability measure, the possibility measure can be characterized by a 
distribution function.  Let l(θ) = Pl ({θ}), then 
 
(2.3)   Pl(A) = sup θ∈A  l(θ).           
 
The function l(θ) is called likelihood function in Chen (1993). Note that the likelihood function 
plays a similar role as probability function and the operator ’sup’ or  ’ V ’ acts as  ’ ∫ ’ or ’Σ ’ in 
probability measure. 
 Under possibility model if we believe A is true, but we are not absolutely certain, then we 
have Bel (A) = s, 0 <s <1, where s is the confidence level. The rest of the belief or doubt, 1 - s, 
is attributed to Pl ( Α ).  Since by (iii)′ and (iii) we have Bel ( Α ) = 0 and Pl (A) =1; these two 
values do not need to be specified.  Thus, although possibility model belongs to the class of 
upper and lower probabilities model, it is actually a single-value “probability” model in 
disguise. There is no need to embed a probability measure in between belief and possibility 
measures.  
 For the statistical inference under possibility and belief measures we state a few theorems 
from Chen (1993). 
 
Theorem 2.1. (Chen (1993)) If X1,..., Xn|θ ∼ i. i. d.  p(x|θ), and l(θ) is prior belief for θ, then 
the posterior belief for θ| x1,..., xn is 
 
(2.4)  l(θ| x1,..., xn) = l(θ) p(x1,..., xn|θ)/ supθ ∈Θ  l(θ) p(x1,..., xn| θ)    
 
 If l(θ) =1, ∀ θ∈Θ, which is known as a vacuous belief, then (2.4) reduces to l(θ| x1,..., xn) = 
k p(x1,..., xn|θ). Thus, l(θ| x1,..., xn) can be considered as a normalized “likelihood function”,  
L(θ| x1,..., xn) = p(x1,..., xn|θ). 
 
Theorem 2.2. If l(θ) =1, ∀ θ∈Θ, and g: θ → η is a function onto Θ′, then l(η) =1, ∀ η∈Θ′. 
Proof.  l(η) = sup g (θ) =η  l(θ)=1, ∀ η∈Θ′. 
 
 The previous theorem indicates that a vacuous likelihood function is still vacuous under 
transformation. This property does not hold for a uniform probability function.  Thus, Bayesian 
inference has difficulty incorporating the concept of vacuous belief; furthermore, a uniform 
prior does not always exist in Bayesian inference. 
 If we define the weight of evidence in the same way as Shafer (1976) 
 
(2.5)  W(H|E)= - log(1-Bel (H|E)),         
 



then this weight of evidence is also equivalent to Bayesian weight of evidence defined by Good 
(1950). If Pl(H)=1, Pl( Η )=1 and P(E|H) ≥ P(E| Η ), by (2.4) we have 
 
(2.6)  log(P(E| Η )/P(E|H)) = - log(1-Bel(H|E)),      
 
where log(P(E| Η )/ P(E|H)) is Good’s definition of weight of evidence. And if P(E|H) < 
P(E| Η ), then by Good’s definition, the support of H given E is negative, which is equivalent to 
assigning a positive support to Η . 
 
Theorem 2.3. (Chen (1993)). Let X1|θ and X2|θ be independent random variables with 
probability function p1(x1|θ) and p2(x2|θ) respectively, and l(θ) =1, ∀ θ∈Θ. 
 If supθ ∈Θ  l1(θ|x1) l2(θ|x2) > 0, then 
 
(2.7)   l(θ|x1, x2)=  l1(θ|x1) l2(θ|x2)/ supθ ∈Θ  l1(θ|x1) l2(θ|x2)    
 
 Equation (2.7) is known as the likelihood rule.  Note that (2.7) holds even if x1 and x2 are 
vectors. Thus, if we have likelihood functions from two independent samples, they can also be 
combined by (2.7). This provides a simple method for a meta analysis.  
 We now look at the likelihood rule from an evidential point of view. 
 
Corollary. Let H and Η  be two rival hypotheses , and let E1, E2 be two independent evidences. 
(i) If E1 and E2 both support H, then we have W(H|E1, E2) = W(H|E1) + W(H|E2). 
(ii) If E1 supports H, E2 supports Η  and W(H|E1) > W( Η |E2), then we have W(H|E1, E2) = 
W(H|E1) - W( Η |E2). 
 
Proof. By (2.7) Bel(H|E1) = s1 and Bel(H|E2) = s2 ⇒ Bel(H|E1, E2) = 1 - (1-s1) (1-s2), and 
Bel(H|E1) = s1, Bel( Η |E2) = s2, and s1 > s2  ⇒ Bel(H|E1,E2) = 1 - (1-s1)/(1-s2). So we have the 
results.  
 
 From this corollary we see that a belief update under the likelihood rule reduces to simple 
addition or subtraction of weights of evidence. 
Remark. Shafer (1976) also suggests measuring a parameter by the  possibility and belief 
measures, which he called a consonant belief function.  But he thought that dissonant evidence 
could produce partial supports to rival hypotheses. Thus, he proposed to use Dempster’s rule to 
combine the statistical evidence. As a result the combined belief of each sample is not the same 
as the belief of the combined sample; this has been much criticized. Smets (1982) pointed out 
that if we use the likelihood rule instead of the Dempster’s rule this difficulty can be resolved. 
 
 
 



 
 
 

3. COMPARISON OF LIKELIHOOD INFERENCES AND CLASSICAL INFERENCES 
 
 In the next two sections we will compare the possibility inferences with the classical 
statistical inferences based on decision and sampling theory. We refer to the inference based on 
(2.4) with vacuous prior as the likelihood inference since it is close to Fisher’s concept of 
mathematical likelihood, and it also satisfies the likelihood principles advocated by Birnbaum 
(1962) and Edwards (1972) etc. With the likelihood function of possibility measure to portray 
the likelihood, we can have joint likelihood, marginal likelihood and prior belief; thus, many 
early criticisms of the likelihood inference can now be resolved. 
 The likelihood inference measures the whole hypothesis space. Several hypotheses can be 
simultaneously entertained; there is no need to set up the null and alternative hypotheses. 
However, many problems of classical hypothesis testing still can be applied. If Bel(H1) ≥ 1-α,  
and α is small; then it is logically equivalent to rejecting a null hypothesis. But, unlike the 
classical hypothesis testing, we can also accept H0 as true, if Bel(H0) ≥ 1-α, although this 
seldom holds for a point null hypothesis. 
  The precise location of the true parameter cannot be ascertained from the likelihood 
function. However, we have confidence that it lies in a certain region, which will be called a 
likelihood interval. 
 
Definition. Let θ be a stationary variable on Θ. A subset A ⊂ Θ is the likelihood interval for θ 
with a confidence level 1- α if 
 
(3.1)  A = {θ| l(θ)≥α }       
 
 This kind of interval is equivalent to a α-cut set in the fuzzy set theory. From (3.1) 
obviously we have Bel(θ∈A) ≥ 1-α. A likelihood interval is a rational belief of  where the 
parameter is located after the samples are realized, while a classical confidence interval is a 
predicted coverage of the parameter before the samples are selected. A discussion of these 
conceptual differences can be seen in Hacking (1975). Note that the concept of likelihood 
interval was also realized by Fisher (1956). 
 We first look at the binomial case. Let x be the observed outcome from a binomial 
distribution B(n, p). A likelihood interval for p with confidence level 1-α is (pL , pU), where pL 
and pU  are the solutions of 
 
(3.2)   px (1-p)n-x {(x/n)x((n-x)/n)n-x }-1 = α.     

 
 Table 1 shows a few interval estimates for sample sizes n=10, 50 and 100. 
 
 



 
Table 1. Likelihood limits for binomial p with confidence level 1- α 

 

 n=10   n=50   n=100   
α x pL pU x pL pU x pL pU

.01 1 .0004 .554 5 .018 .273 10 .033 .214 

.05  .002 .455  .027 .234  .042 .189 
.1  .004 .403  .033 .214  .048 .176 
          

.01 3 .031 .756 15 .135 .560 30 .176 .448 

.05  .055 .678  .161 .528  .197 .418 
.1  .072 .634  .176 .448  .209 .403 
          

.01 5 .113 .887 25 .295 .705 50 .352 .648 

.05  .164 .836  .332 .688  .379 .621 
.1  .197 .803  .352 .648  .394 .606 

 
 

 Next, we look at the normal cases. Let x1,...,xn be the observed outcome from a normal 
distribution N(µ, σ2). First we assume σ is known and µ is to be estimated. Then the likelihood 
limits for µ at confidence level 1- α are the solutions of 
 
(3.3)     exp{-n(⎯x - µ)2/2σ2} = α.        
 
Thus they are  
 
(3.4)     ⎯ ⎯x ± cα σ/√n,         
 
 where cα= (-2 ln α)½.  
Table 2 shows the comparison of the coefficients cα and the corresponding coefficients zα/2 of 
the classical method, where zα/2 is the upper α/2 percentile of the standard normal distribution. 
 

Table 2. Coefficients of cα and the corresponding zα/2

 
coefficient α= .1 α= .05 α=.02 α= .01 α=.005 

cα 2.146 2.448 2.797 3.035 3.255 

zα/2 1.645 1.960 2.326 2.576 2.807 

 
 



 
 
 If σ is unknown, then both µ and σ are stationary variables; we need a joint likelihood 
function of (µ,σ). Since the marginal likelihood l(µ |x1, ..., xn)= sup 0<σ<∞ l(µ,σ |x1, ..., xn), the 
likelihood limits for µ at confidence level 1-α  are the solutions of 
 
(3.5)     {1+(⎯x - µ)2)/ σ̂ 2}-n/2 = α,      
        n 
where σ̂ 2 = ∑ (xi -⎯x)i=1

2/n is the MLE of σ2. So they are 
    
(3.6)     ⎯x ± (α -2/n - 1)½ σ̂ ,      
 
or equivalently 
 
(3.7)     ⎯x ± cn,α s/√n,       
     n 
where s = {∑i=1(xi - ⎯x)2/(n-1)}½  and cn,α={(n-1)(α-2/n -1)}½. 
 
 Table 3 shows the coefficients of cn,α in comparison with the t n-1,α/2 of Student’s t-values. We 
notice that as n → ∞, Table 2 and Table 3 give the same result as expected. 
 

Table 3. Student’s t-values and the corresponding likelihood coefficients  
 

 n=5 n=10 n=20 n=30 n→∞ 

   α tn-1,α/2          cn,α tn-1,α/2          cn,α tn-1,α/2          cn,α tn-1,α/2          cn,α tn-1,α/2          cn,α 

.1 2.132 2.459 1.833 2.294 1.729 2.218 1.699 2.194 1.645 2.146 

.05 2.776 3.043 2.262 2.718 2.093 2.576 2.045 2.532 1.960 2.448 

.02 3.747 3.889 2.821 3.268 2.539 3.016 2.462 2.940 2.326 2.797 

.01 4.604 4.609 3.250 3.689 2.861 3.334 2.756 3.228 2.576 3.035 

.005 5.595 5.413 3.690 4.119 3.174 3.643 3.038     3.505 2.807 3.255 

  
 

4. TWO-SAMPLE PROBLEMS 
 
 In two-sample statistical inference we are interested in evaluating the relation between 
parameters of two populations. Mathematically, a relation can be considered as a subset of a 
product space. 
 



  
Definition. If  l(θ1, θ2) is the joint likelihood function of  θ1 and θ2 , and R ⊂ Θ1× Θ2 is  a 
relation; then 
(4.1)   Pl((θ1, θ2 ) ⊂ R) = sup(θ1, θ2 ) ⊂ R l(θ1,θ2 )     
 
is a likelihood relation between θ1 and θ2 with respect to R. 
 Let X1, ..., X n1|θ1 be i. i. d. ∼ p1(x|θ1) and  Y1, ..., Y n2|θ2 be i. i. d. ∼ p2(x|θ2), X’s and Y’s are 
independent.  If the priors beliefs l(θ1) and l(θ2) are vacuous, then the joint likelihood function 
of posterior belief is 
  
(4.2)  l(θ1, θ2|x1, ..., x n1

, y1, ..., y n2
) = p1(x1, ..., x n1

|θ1) p2(y1, ..., y n2
|θ2)/ 

     supθ1∈Θ1, θ2∈Θ2
 p1(x1,..., x n1

|θ1) p2(y1, ..., y n2
|θ2),    

 
or equivalently 
 
(4.3)  l(θ1, θ2|x1, ..., x n1

, y1, ..., y n2
)=l1(θ1| x1, ..., x n1

) l2(θ2| y1, ..., yn2
)/ 

supθ1∈Θ1
, θ2∈Θ2

  l1(θ1| x1, ..., x n1
) l2(θ2| y1, ..., y n2

).       
  
 We first look at the binomial case. Let x and y be the observed outcomes from two 
independent binomial distributions B(n1, p1) and B(n2, p2) respectively. Then we have 
 
(4.4)  Pl(p1= p2| x,y) = x+yp̂  (1- )p̂ n1+n2-x-y / 1p̂ x (1- 1)p̂ n1-x 2 p̂ y (1- 2 )p̂ n2-y,   
 
where = (x+y)/(n1+n2), 1= x/n1 and 2= y/n2. p̂ p̂ p̂
Remark. Fisher (1956) also derived a formula the same as (4.4) from a likelihood argument. 
 Next we consider the normal cases. Let x1, ..., x n1

 and y1, ..., y n2
 be the observed outcomes 

from two independent normal distributions N(µ1,σ1
2) and N(µ2,σ2

2) respectively. First we 
assume σ1 and σ2 are known, then we have 
 
(4.5)  Pl(µ1 = µ2| x1, ..., x n1

, y1, ..., yn2
) = exp{-(⎯x -⎯y)2/2 (σ1

2/n1+ σ2
2/n2)},  

 
where⎯x =∑xi/n1,⎯y =∑yj/n2 are the two sample means.  
 In comparison with the classical two-sample test we have   
 

Bel(µ1 ≠ µ2| x1, ..., x n1
, y1, ..., yn2

) ≥ 1- α,  
if  

(4.6)  |⎯x - ⎯y| ≥ (-2 ln α)½ (σ1
2 /n1+ σ2

2 /n2)
½.     



 

 Again, in statistical practice, the difference between the likelihood inference and the 
classical inference is the constants, cα = (-2 ln α)½ versus zα/2. 
 If  σ1 and σ2 are unknown, based on the likelihood inference we have 
  
(4.7) Pl(µ1 = µ2| x1, ..., x n1

, y1, ..., yn2
) = supµ{1+(⎯x - µ)2)/σ̂ 1

2}-n
1
/2{1+(⎯y - µ)2)/σ̂ 2

2}-n
2
/2,  

 
where σ̂ 1

2 = ∑(xi -⎯x)2/n1 and  σ̂ 2
2 = ∑(yj -⎯y)2/n2 are the MLE of σ1

2 and σ2
2. Note that there 

is no explicit formula for µ̂ ; however, the supremum of (4.7) can be obtained by a numerical 
approximation. 
 Next let us discuss a simple relationship between the one-sample and the two-sample 
likelihood inference. 
 
Theorem 4.1. Let θ1 and θ2 be two stationary variables on Θ. If Bel(θ1∈A) ≥ 1-α, Bel(θ2∈B) ≥
1-α, and A ∩ B=∅ , then we have Bel(θ1 ≠ θ2) ≥ 1-α. 
 
Proof. Since  A ∩ B=∅ , we have  Bel(θ1 ≠ θ2) ≥ Bel(A ×Θ ∩ B ×Θ) =Bel(A× Θ) ∧ Bel(B × Θ) 
≥ 1-α. 
 
 The previous theorem indicates that if the likelihood intervals with confidence level  1-α for 
θ1 and θ2 do not overlap, then we can infer that θ1 and θ2  are not equal with a confidence level 
at least 1-α. Note that the independence assumption of θ1 and θ2 is not required here. 
 
 

5. CONCLUDING REMARKS 
 
 It is always an important philosophical issue if there is a mathematical model of inductive 
probability, different from the model of mathematical probability. In this article we show that 
the possibility and belief measures can be employed as inductive probability in statistical 
inference. Although we only address the parametric models, a similar approach can be applied 
to a nonparametric model by considering a population distribution F as a  ’stationary process’; 
we can obtain an inference similar to Ferguson (1973).   
 Fisher promoted the tests of significance, but he held the viewpoint that statistical 
inference is a part of the inductive inference. In Fisher (1935) he stated  “The inferences of 
classical theory of probability are all deductive in character... mathematical likelihood appears 
to take its place as a measure of rational belief when we reason from the sample to the 
population.” He anticipated an uncertainty model of mathematical likelihood different from the 
model of mathematical probability (see also Fisher (1936), (1956)). Although he never 
developed a rigorous theory for the mathematical likelihood, he did derive some results similar 
to the likelihood inference discussed in this article. 
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